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Abstract—We study learning outcome prediction for online courses. Whereas prior work has focused on semester-long courses with
frequent student assessments, we focus on short-courses that have single outcomes assigned by instructors at the end. The lack of
performance data and generally small enrollments makes the behavior of learners, captured as they interact with course content and
with one another in Social Learning Networks (SLN), essential for prediction. Our method defines several (machine) learning features
based on the processing of behaviors collected on the modes of (human) learning in a course, and uses them in appropriate
classifiers. Through evaluation on data captured from three two-week courses hosted through our delivery platforms, we make three
key observations: (i) behavioral data contains signals predictive of learning outcomes in short-courses (with classifiers achieving AUCs
≥ 0.8 after the two weeks), (ii) early detection is possible within the first week (AUCs ≥ 0.7 with the first week of data), and (iii) the
content features have an “earliest” detection capability (with higher AUC in the first few days), while the SLN features become the more
predictive set over time as the network matures. We also discuss how our method can generate behavioral analytics for instructors.
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1 INTRODUCTION

A multitude of online learning platforms have emerged
over the past decade, offering services ranging from

tutoring to professional development to higher education.
For all its benefits, however, the quality of online learning
has been criticized. In comparing it to traditional, face-to-
face instruction, researchers have found lower engagement
and knowledge transfer for learners, both in higher educa-
tion [2] and corporate training [3]. These poorer outcomes
have been attributed to factors such as the asynchronous
nature of interaction online, which places limitations on
social learning [4].

In free, open online courses, lower engagement and
knowledge transfer may be acceptable, because learners
have varying motivations for enrollment in the first place.
Yet, in the case of corporate training, with over $50 billion
has been spent on training by corporations in the US each
year since 2009, engagement, retention, and knowledge
transfer from courses to the workplace are reportedly not
meeting the expectations of employers [5]. In this paper,
we propose analytics derived from learner behaviors to
improve learning outcomes.
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1.1 Predictive Learning Analytics

Predictive Learning Analytics (PLA) is emerging as a re-
search area with the promise of helping instructors improve
course quality, particularly in online courses [4]. Prediction
of student drop-off rates [6], quiz scores [7], exam per-
formance [8], and beneficial collaboration groups [9] each
detect scenarios for which instructor intervention has a high
chance of positively impacting the learning experience.

Most PLA methods have been developed for and evalu-
ated on semester-long courses, e.g., in Massive Open Online
Courses (MOOCs) [2], [10]. These course scenarios usu-
ally have two properties that are useful from a modeling
perspective. First is frequent assessments to track student
progress, which has been the most common data source
for PLA methods to-date, e.g., using matrix factorization
to discover patterns across student scores [7]. Second is
a large number of enrolled learners, which increases the
samples available for the PLA model. But what about cases
in which (i) assessments are not used frequently, if at all,
and (ii) the number of learners in a course session is small?
This is common in online corporate training, where courses
may last only several days and may have considerably
smaller enrollments [11]. These “short-courses” require the
development of a PLA methodology that can work with the
type of data that is available for modeling.

Today, online course platforms can collect behavioral
measurements about learners, which includes how they
interact in Social Learning Networks (SLN) [4] and with
the course content. The resulting content clickstream [2] and
SLN [9] data present novel opportunities to design PLA
methods that model learner attributes based on behavioral
data in short-courses. This paper presents and evaluates one

0000–0000/00$00.00 c© 2017 IEEE



2

Topic
Modeling

Course
Files

Forum
Posts

Input Data
(Sec. 2, 3.2)

Content
Clickstreams

Data
Preprocessing

Summary
Quantity

Computation

Post-File
Similarity

Computation

Feature Definition &
Computation (Sec. 3.1&2)

Post
Events

Clickstream
Events

Content
Features

SLN
Features

Model Training, Tuning,
& Evaluation (Sec. 3.3, 4, 5)

Feature
Selection

Learning
Outcomes

Cross
Validation

Current Course
Offering (Day n)

Trained
Model

Behavioral
Analytics

Make
Predictions

Clickstreams 
and Posts

To
Instructor

Data through Day n

Data through Day 1

Day n Features

 Day 1 Features

Feature
Computation

Evaluation
Result

Fig. 1: Summary of the different components of the learning outcome prediction method we develop in this paper.

such method for learning outcome prediction, using data
captured from short-courses hosted with our course Player,
instructor Dashboard, and integrated discussion Forum.

1.2 Behavior-Based Outcome Prediction

In this work, we investigate the following research questions
related to learning outcome prediction:

• If pre-processed correctly, can behavior alone be used to
predict learning outcomes in short-courses?

• How early into short-courses can these predictions be
made with reasonable quality?

• Is the learning behavior associated with course content or
with SLN more effective for prediction?

Researchers have proposed algorithms for student perfor-
mance prediction that augment assessment-based methods
with behavior-based machine learning features [2], [7], [12].
Motivated by these schemes, in this work we consider the
challenging case of short-courses with small enrollments
and without intermediary assessments, thereby necessitat-
ing fully behavior-based, sparse PLA modeling.
Our methodology. Fig. 1 summarizes the methodology
developed in this paper. To make predictions during the
nth day of a course’s current offering, we use the behavioral
data collected from the first n days of prior offerings of
this course as input. Using our system architecture for data
capture (summarized in Sec. 2), one of the key challenges
is to process this raw data into effective feature sets for
modeling learning behavior, which we address in Sec. 3.1.
In particular, we define two types of features:
(i) Content features: These features summarize learner behav-
ior while interacting with course content in the Player. They
include a novel definition of how to measure a learner’s
“engagement” on different content files.
(ii) SLN features: These features summarize learner discus-
sions in the Forum. They include the similarity between
learner’s posts and the course content, determined through
natural language processing models.

Prior works applying content features to prediction [6],
[7] have relied on clickstream data from a single learning
content type. Other works that have considered SLN fea-
tures [12], [13] have neglected topic similarity component.
Our subsequent feature selection (Sec. 3.3) shows that the
engagement and topic similarity components are particu-
larly useful in outcome prediction for short-courses.

With the objective of predicting whether a learner will
ultimately pass or fail a course, our method uses the feature
sets as input to different classifiers in training and evalua-
tion, which is the focus of Sec. 4. The choice of classifier and
parameters is made through cross validation accounting for
the need for sparse modeling (Sec. 4.1). The evaluation result
from this stage (Sec. 4.3), as well as behavioral analytics
from the feature correlations (Sec. 5.1 & Sec. 5.2), can be
shared with instructors to give them ways to assist learners,
as pointed out in Fig. 1. Finally, the real-time predictions
and corresponding early detections are made by applying
the trained model to the features computed on the data
collected thus far in the current offering, and the results are
made available to the instructor too.
Evaluation and key results. To evaluate our outcome pre-
diction method, we use datasets from three recent courses
(described in Sec. 3.2) we delivered for a professional train-
ing course provider in the US. Each course session lasts two
weeks and has a single binary outcome (pass/fail) at the end
that is determined by the instructor. Through simulating the
predictions for each course using our day-by-day modeling
approach, we make three main observations:

• The highest performing algorithms that can model
under sparse conditions reach ≥ 0.8 AUC by the end
of the courses, exceeding 0.9 in some cases, with ≤
0.1 Type II error.

• Using only the first week of data, the algorithms can
still reach ≥ 0.7 AUC, which underscores the early
detection capability of behavioral data.

• The content features exhibit an “earliest” detection
capability in the first few days of a course, while the
SLN features tend to bring superior quality after that.

2 LEARNING TECHNOLOGY SYSTEMS

Our system has four main parts, shown in Fig. 2: the course
Player, the analytics Dashboard, the discussion Forum, and
the Backend. We describe these parts in this section.

2.1 Player: Learner-facing
Learners obtain access to the Player through web browser.
The data measurements collected through the Player are
processed to compute the content-based features in Sec. 3.
Course architecture. Each course is organized into a set of
modules, each module consisting of one or more units. A
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Fig. 2: System architecture overview.

unit is the most basic entity of a course, i.e., the course is de-
livered to learners through the Player as a sequence of units.
Each unit may contain one or more content files, where each
file corresponds to a different learning mode (i.e., content
type). These files can include interactive slideshows, PDFs,
text articles, and lecture videos. In the courses we consider
in this paper, each unit is some combination of the first three
of these content types; samples of slides and PDFs within
the Player can be seen in Fig. 3.
User functions and data capture. In interactive slideshows,
a learner can perform the following actions: play (Pl),
pause (Pa), and skip forward (Sf) or backwards (Sb) on
the current slide, and advance to the next slide. Within a
PDF and an Article, learner can scroll up (Su) or down
(Sd) on the pages. In any of these file types, learners can
create a note or a bookmark at any location. Each time one
of these actions occurs, a clickstream event with timestamp,
user, and position identification information is sent to the
Content Database in the Backend (Fig. 2).

Actions outside content are also captured. An enter
(En) / exit (Ex) event is created whenever a learner enters
/ exits a unit, as is a login / logout event whenever
a learner logs in / out of the course. Also, learners can
customize the window layout in their browser. A window
event is created each time a learner maximizes (Wx) or
minimizes (Wn) a window.

2.2 Dashboard: Instructor-facing

The Dashboard is divided into tabs, each with charts on
a different learning aspect. The instructors for the courses
considered in this paper had access to the three following
tabs, the latter two of which are shown in Fig. 4:
Overview. This provides high-level summaries of learners’
activity and progress.
Engagement. Each learner is given an engagement score in
each unit and module, and for the whole course. This tab vi-
sualizes these scores for an instructor to draw comparisons.
Content. This shows time spent, number of views, and com-
pletion rate on each content file (formalized as prediction
features in Sec. 3). A progress bar is shown for the average
completion rate. Instructors can access plots of time spent
and view count across each partition of a file.

2.3 Discussion Forum
Our system integrates with NodeBB1, an open-source dis-
cussion forum platform. Each course’s forum is divided into
a set of threads, with the first post in each thread being made
by the instructor.
User functions and data export. Within a thread, a user
can create a post (consisting of some text), reply to a
post, and up-vote or down-vote a post. At the end of a
course, the NodeBB API provides the details of each thread
to the SLN Database in the Backend (Fig. 2). For each post,
it indicates the user ID, timestamp, text, net votes (up-votes
minus down-votes), replies, and whether each reply was an
instructor or a learner.

The interaction between learners in the forum is an
important part of the SLN. In Fig. 5, we illustrate interaction
graphs for three course sessions considered in this paper
(see Sec. 3). Each node is a learner, and the weight wi,j from
learner i to j is proportional to the number of times i posted
and/or responded to j. We see that the structure in these
courses is rather dense (with ≥ %34 of the links non-zero,
including learners who do not post that are not depicted),
contrary to the case of MOOCs [9]. This foreshadows an
observation we will make in Sec. 4 that differences in out-
comes are more readily detected from the contextual rather
than the structural aspects of the discussions.

Table 1 summarizes the main event types from the Player
and the Forum considered in this paper.

2.4 Backend: Storage and Processing
The Backend in (Fig. 2) is divided into five main parts.
Databases. The Course Database is where the learning re-
sources for a course are stored. The Content Database (resp.
SLN Database) is where the measurements described in Sec.
2.1 (Sec. 2.3) on learners’ activity in the Player (discussion
forum) are stored. The clickstream events are stored in
JSON format, each with an associated timestamp, learner
ID, course ID, and session ID (unique to each log-in). The
discussion information are also stored in JSON format.
Engines. The Rendering Engine fetches information from
the Content Database about learners’ current state to deter-
mine what from the Course Database they are shown next.
In these courses, this is done in a unit-by-unit fashion, i.e.,
at the beginning of the course, only the first unit is available
in the table of contents, and every time a learner finishes
the current unit, a new one is loaded. The Analytics Engine
performs computations on the Content and SLN Databases,
feeding the results to the Dashboard for visualization (and
to the Rendering Engine if the course is adaptive). The
computations made by this engine, and the demonstration
of prediction algorithms that will be incorporated into it, is
what we will focus on in Sec. 3, 4, and 5.

3 ML FEATURES AND DATASETS

In this section, we present our behavior-based machine
learning features. We will first specify the feature matrix that
we compute for each dataset (Sec. 3.1), then give descriptive
statistics of datasets in terms of these features (Sec. 3.2), and
finally describe the feature selection process (Sec. 3.3).

1. www.nodebb.org.
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(a) Interactive slide (b) Article

Fig. 3: Snapshots of two of the file types as they were delivered to learners in the Player for these courses. The Player interaction
features are also shown here, e.g., the slide scrubber in (a) and the next button in (b).

(a) Engagement (b) Content

Fig. 4: Snapshot of two of the tabs on the Dashboard used by instructors in these courses.

3.1 Our Machine Learning Features

Let A = [av,f ] be the learner-feature matrix for a course,
where av,f is the value that feature f ∈ F takes for each
learner v. We write A = [Ac As], where Ac and As are the
matrices of content features and SLN features, respectively.
In what follows, we define the quantities that comprise the
corresponding feature subsets Fc and Fs.

3.1.1 Content Features (Fc)
Fc summarizes the interactions a learner has with the
Player. Event interactions consist of the eight different types
summarized in Table 1: each type appears in Fc one time for
each learning content file (e.g., slide, PDF) that they apply
to. We use the frequency of events rather than indicator
variables to account for how often learners use different
behaviors. Additionally, Fc includes summative quantities
given in the Dashboard; in particular, time spent, comple-
tion rate, and engagement. In what follows, we divide each
file o into a set of smaller partitions P(o), where p ∈ P(o)
refers to the pth partition. For article and PDF, P(o) is the
set of pages, and for interactive slides, P(o) is the set of
one-minute video segments making up the full set of slides.
Time Spent. For each content file, this is the amount of (real)
time that a learner spent on that file. Letting tv,o be the time
spent by learner v on file o, we sort v’s clickstream events
on v by timestamp and aggregate the time elapsed between
each pair of events. In doing so, we filter two cases of clear
off-task behavior. First is if more than 2t̄o [2] has elapsed
between a pair of measurements, where t̄o is the expected
time spent on o (defined later); in this case, the learner will
be given 2t̄o for this pair. Second is if the first event in the

pair is a Wn event, in which case the learner has minimized
the Player; in this case, no time will be awarded. We then
calculate time spent by summing over files in the unit, for
each module by summing over units, and for the full course.
Completion Rate. The completion rate rv,o ∈ [0, 1] is the
fraction of file o that learner v viewed [7]. This is determined
by finding the fraction of content partitions P(o) that the
learner generated at least one clickstream measurement on.
For example, if the Player recorded scroll events for two
pages of a 10-page PDF o, then |P(o)| = 10 and rv,o = 0.2.
We calculate the completion rate for each unit by averaging
over the files in the unit, for each module by averaging over
the files in the module, and for the full course.
Engagement. We define engagement as a model for the
amount of effort a learner is putting into studying a piece
of content. As with time spent and completion rate, engage-
ment appears in Fc once per content file, once per unit, once
per module, and once more as overall for the course.
File-level: Let tv,p be the time spent by user v on partition p,
and t̄p be the “expected” time spent on p for normalization
(defined below). Similarly, let bv,p be the number of notes
and bookmarks (referred together as annotations) created on
p, and b̄p be the expected value of this quantity. Engagement
on o, ev,o, is defined as:

ev,o(r, t) = min(γ × rv,o

×
∏
p∈Po

(
1 + tv,p/t̄p

2

)αt
(

1 + bv,p/b̄p
2

)αb

, 1)
(1)

Here, αt, αb ≥ 0 are parameters that model the diminish-
ing marginal returns property of the time spent and note
creation components, respectively. Through this, a learner’s
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Event Description File type(s)
play (Pl) A play event begins when a click event changes a content file to the playing state. Slides
pause (Pa) A pause is recorded when a click event changes a content file to the paused state. Slides
skip (Sb, Sf) A skip back (forward) occurs when a scrubber is brought to an earlier (later)

position.
Slides

scroll (Su, Sd) A scroll up (down) occurs when a scroll bar is brought to an earlier (later) position. PDF, Article
note A note is recorded when a note is created. PDF, Article, Slides
bookmark A bookmark is recorded when a bookmark is created. PDF, Article, Slides
window (Wx, Wn) A window max (min) event occurs when a content file is maximized (minimized). PDF, Article, Slides
enter (En, Ex) An enter (exit) event occurs when a a learner enters (exits) a unit in the Player. –
post A post event happens when a user creates a post in a thread. Forum
reply A reply event occurs when a user creates a reply to a post. Forum
vote An up-vote (down-vote) occurs when a post receives an up-vote (down-vote). Forum

TABLE 1: Summary of the behavioral events analyzed in this paper, captured by the Player (content events) and Forum (SLN
events).

(a) VE (b) ES (c) LS

Fig. 5: Graph of learner interaction on the discussion forums, for one session of each course analyzed in this paper (see Table 2.)

time spent and annotations on each specific p counts in-
crementally less towards her engagement, i.e., a learner
is rewarded more for distributing her time spent across
more partitions, and similarly for a learner’s note creation
behavior, i.e., a learner is rewarded more for distributing
notes across more partitions. The division by 2 makes the
computation for each partition relative to a learner that
registers the expected time spent tv,p = t̄p and annotations
made bv,p = b̄p. γ ∈ (0, 1] is an instructor-specified constant
that controls the spread of the overall engagement distribu-
tion; note that if completion on the file rv,o = 1 and the
learner has tv,p = t̄p and bv,p = b̄p on each p, then ev,o = γ.
We discuss the selection of γ, αt, and αb in Sec. 3.2.
Unit, module, and course-level: A weighted average is taken
across the files O(u) in a unit u to come up with the unit-
level engagement: ev,u =

∑
o∈O(u) t̄oev,o/

∑
o t̄o from (1) for

each learner, where t̄o is the expected length of o (defined
below). Similarly, a weighted average is taken across units
to come up with module and course-level engagements.
Normalization values: To calculate t̄p and t̄o for PDF and arti-
cle, we first use Optical Character Recognition to obtain text
transcripts, and correct any inconsistencies in the output.
The reference time spent t̄p on p is the expected time a
learner will take to read the transcript of this partition, as-
suming a standard average reading speed of 6.6 characters
per second. t̄o is then

∑
p t̄p. For slides, t̄p = 60 sec ∀p,

and t̄o = 60|P(o)| sec is the total length of the videos that
comprise the interactive presentation. Since learners do not
frequently use the note/bookmark creation functions, we set
b̄p = 0.05� 1, i.e., less than one note is expected across the
15-or-so files in each course. Note that these quantities are
defined in terms of average viewing and reading speeds for

video and text content, respectively, which may be different
from the speed at which a learner can comprehend the
material [14]. We will see in Sec. 3.3 that the definitions we
use lead to engagement features that are among the most
correlated with learning outcomes, which gives justification
to our choices for the purposes of prediction.

3.1.2 SLN Features (Fs)
Fs contains quantities that summarize a learner’s interac-
tion within the SLN. This includes the frequency of the
Forum events from Table 2: the number of posts (and
replies) a learner made, the number of replies the learner
received, and the net votes the learner received on her
posts/replies. It also includes the total number of words
contained in said posts/replies. Finally, it includes the time
period that a leaner stayed active in the forum, defined as
the time elapsed between the learner’s first and last post.
Content similarity. Fs also contains features describing the
contextual/topical aspect of a learner’s posts. To measure
the relevance of a learner’s discussion to the course content,
we define a content similarity measure sv,u between unit
u ∈ U and learner v ∈ V . The sv,u are included as features
in Fs for each course unit. They are obtained as follows:
Topic distributions: We first extract the set of topics K in the
course, and represent u’s content and v’s posts as probability
distributions di = (di,1, ..., di,|K|) over the topics, where i ∈
I = {1, ..., |U| + |V|} indexes unit u(i) = i if i ≤ |U| and
learner v(i) = i − |U| otherwise. To do this, we represent
each i as a word frequency vector wi = (wi,1, ..., wi,|X |)
over the full dictionary X of words. For i > |U|, wi,x is the
number of times learner v(i) wrote the xth word in X across
all her posts, and otherwise wi,x is how many times the xth
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Course Name Days Units Slide Articles PDF Enrolled Pass Fail Click Post Features
Vanquishing Toxic Employees VE 14 11 1 6 6 79 15 64 20,126 73 145

Effective Communication Skills ES 14 11 2 4 8 94 45 49 45,380 104 154
Developing Leadership Styles LS 14 11 2 6 5 96 44 52 48,449 116 192

TABLE 2: Summary information of the short-course datasets used in this paper.

word appears in the text transcripts of u(i).2 In collecting
words for X across the posts and content, we also apply
appropriate stopword filtering, as in [9]. Then, with W =
[wi] ∈ Z|I|×|K| as the document-word matrix, we apply the
popular Latent Dirichlet Allocation topic model [9], which
results in the di.
Similarity measure: With the topic distributions in hand, we
define the similarity via total variation distance: sv,u = 1 −
0.5‖di(v) − di(u)‖1.3 In this way, sv,u ∈ [0, 1] captures the
variation between the two topic-word distributions (over a
finite alphabet).

3.1.3 Time-varying features
For each course, we define A(n), and its subsets Ac(n)
and As(n), to be the feature matrices using the behavior
available from the launch of the course through day n.
Evaluating using day-by-day data allows us to assess how
the quality of our predictions is expected to vary at different
points along the course timelines. Note that prior works
on student performance prediction [2], [7] have used the
equivalent of a unit-by-unit approach for early detection
(i.e., using data collected in the first few units). The day-by-
day approach allows us to account for the fact that learners
tend to re-visit units at different times throughout a course.

3.2 Datasets and Computed Features
3.2.1 Course Design and Datasets
The datasets used to evaluate our method came from
three short-courses that we hosted for a corporate train-
ing provider: “Vanquish Toxic Employees” (VE), “Effective
Communication Skills” (ES), and “Techniques for Develop-
ing Your Leadership Styles” (LS). Summary information on
the datasets is shown in Table 2 and is discussed further be-
low. As the titles suggest, these courses emphasize business
operations and leadership for professional development;
most enrolled learners were company employees whose
managers had required them to take this training.
Learning activities/tasks: Each of the three courses were two weeks
long, and consisted of three tasks that learners were required
to complete: (i) course content, (ii) forum discussions, and (iii)
live events. The content consisted of 11 units, with each
unit being delivered in slide, article, and/or PDF form.
The Forum was available throughout the two weeks for
learners to exchange questions/comments about the course
with one another as well as with the instructors. The live
events consisted of 2-3 real-time sessions moderated by the
instructors, facilitated through the Forum.

For the live events, the first session was typically held
one week in, aiming to, in the words of the instructors, “ex-
change thoughts and learning experiences.” This is where

2. Since text transcripts are for PDF and article file types only, this
does not explicitly include slides in a unit. However, for our datasets,
we notice that the text is usually a repetition of the slide content.

3. i(u) maps from u to its index in I, and likewise i(v) maps from v
to I.

learners would introduce themselves and describe events in
the workplace relevant to the course content topics that they
had individually experienced (e.g., a toxic employee on their
team). The latter two sessions were meant as a discussion
of methods taught in the course, and how learners applied
them to their individual situations in the workplace (e.g.,
mitigating the impact of the toxic employee on others). In
Sec. 4.3, we will see that effective outcome predictions can
be made starting around the time of the first live session.
Evaluation: At the end of a course, each learner was given a
single grade (pass, fail, extend, or expired). As there are no
quizzes or exams in these courses, this outcome was based
on the instructor’s impression of the learner’s knowledge
transfer, informed by the information in our Forum and
Dashboard systems; as described in Section 2, these sys-
tems track learner activity and participation throughout the
course. There is no exact formula for how this evaluation
is made, but our prediction results in Section 4 confirm
that behavior is indicative of evaluation. In our analysis, we
group fail, extend, and expired into a single group (denoted
fail), because the instructors view these as undesirable.
Dataset summary: From Table 2, the courses contain between
20K and 50K clickstream events each. The number of each
type of content file (interactive slideshow, article, and PDF)
is also given here. LS and ES are well balanced in their ratio
of Pass to Fail, but in VE, most of the learners (81%) fail.
After computing the features A(15) for each course and
removing any that were 0 for every learner, we are left with
140 to 200 features in each case.

3.2.2 Statistics of Content Features

Fig. 6 gives distributions of several of the features in Fc for
each dataset.4 Each point in each plot corresponds to one
learner. The events in (a)-(c) are aggregated over all files, and
then normalized by the number of units for comparative
purposes.5 The distributions in (d)-(f) are of course-level
engagement, time spent, and completion rate, respectively.
The distributions in (g)-(i) are of unit-level engagement,
time spent, and completion rate across all units.

In comparing the distributions, we employ (i) a Wilcoxon
Rank Sum test for the null hypothesis that there was no
difference between the distributions overall, to compare in
terms of shift, and (ii) Levene’s test for the null hypothesis
that there was no difference between the variances of the
population, to compare in terms of standard deviation.6

We consider the p-values (pw and pl, respectively) and the
following are the main findings:
(i) Pa is most common: This is especially true in VE, where
the median number of pauses per unit is 9, and the effect is
significant in comparing to other events (pw ≤ 1E-3).

4. For the log-scale plots, we only consider the non-zero values.
5. By doing this, we are implicitly assuming that the number of files

is representative of the “length” of that type of content.
6. Note that Shapiro-Wilk tests detected significant departures from

normality [7], making these tests appropriate.
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(a) VE Content Events (b) ES Content Events (c) LS Content Events

(d) Course-level engagement (e) Total time spent (sec) (f) Average completion rate (%)

(g) Unit-level engagement (h) Unit-level time spent (hr) (i) Unit-level completion rate (%)

Fig. 6: Boxplots of select content features f ∈ Fc computed for each dataset. (a)-(c) are for the event features, (d)-(f) are for the
analytic features that appear on the Dashboard at the course level, and (g)-(h) are for the analytics features at the unit level. In
(a)-(c), we see that Pa tends to be the most common type of event while the window events Wn and Wx are least common. (d) and
(g) show that the engagement settings in formula 1 lead to healthy distributions across learners. In (e) and (f), we see that VE has
the highest completion but the lowest time spent, which could be a reason for the outcomes being skewed towards fail.

(ii) Sd occurs more often than Su: The shift is significant in
ES and VE (the medians increase from 1.1 to 1.7 and from
1.9 to 3.7, with pw ≤ 7E-15), though it is less significant in
LS (pw ≤ 9E-2). This is intuitive since learners must scroll
down to move forward in the articles and PDFs.
(iii) Engagement distributions are useful: We set γ = 1,
αt = 0.1, and αb = 0.01 in (1) to generate engagement
distributions with large and relatively uniform spreads
across the ranges. With this setting in each course, learner
engagement varies from low values (≤ 23) to 100, with
medians between 60 and 70, which makes it a useful metric
for instructors to compare learners.7 Note that αb = 0.01
combined with b̄p � 1 means learners are not penalized
substantially for lack of annotations, but still are rewarded
if they do create them. The fact that engagement is one of
the most correlated content features for prediction in Sec.
3.3 also validates these choices.
(v) LS has more consistent completion rate: The completion rate
for LS in (f) has a smaller standard deviation compared with
the other courses (pl ≤ 1.8E-4).
(vi) window events and annotations are consistently uncommon:
Wx and Wn both occur significantly less than all other events
plotted in each course (pw ≤ 1.1E-4). This means learners
rarely change the window layout. Also, only 5 note and
bookmark events were created across the three datasets.

3.2.3 Statistics of SLN Features
Fig. 7 gives the distributions of several of the features in
Fs. In (a)-(c), word count in a learner’s posts, word count
in replies to a learner’s posts, and posting time spread are
given across courses. (d)-(f) shows the learner-unit discus-
sion similarities each course is within each of the three

7. The distribution of engagement in VE is approximately normal
distributed, with a Shapiro-Wilk p > 0.03.

courses. Table 4 summarizes the five topics with highest
support extracted from the posts and text content in each
course. We make a few observations:
(i) SLN activity is lower in VE: Each of the three features
(posts, replies, and time spread) are lower in VE than in
other courses (though only significant for word count, pw ≤
7.3E-5). Given that the course outcome in VE is heavily
skewed towards fail (81%), this foreshadows our point in
Sec. 3.3 that SLN features are correlated with outcomes.
(ii) Topic words are relevant and supports are consistent: From
the titles of the courses, we see that the topics are represen-
tative of likely discussions for each course (e.g., k = 1 in VE
is about “toxic employees”, k = 2 in ES is about “communi-
cating effectively”), and are reasonably non-overlapping in
the top words they include.
(iii) Similarities vary unit-to-unit: We can see that content in
certain units is more heavily discussed by learners than oth-
ers; in particular, unit 6 in VE, units 3 and 10 in ES, and units
6 and 9 in LS. These insights can be useful to instructors to
see which content is the focus and whether that is in line
with success. However, the statistical significance in shift
only holds consistently across the course for unit 6 in VE
(pw ≤ 0.014 compared with all other units).

3.3 Feature Selection
Recall from Table. 2 that the full feature matrix A(n) for
each course has approximately 140-200 feature columns.
In order to reduce overfitting and improve model inter-
pretability, we perform feature selection prior to training
on each A(n), As(n), and Ac(n). We implemented three
standard methods: correlation analysis, information gain,
and random forest importance [15].

Comparing the features selected from these methods in
terms of their eventual predictive quality, we found that
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(a) Post Word Count (b) Reply Word Count (c) Time Spread (hr)

(d) VE Similarity (e) ES Similarity (f) LS Similarity

Fig. 7: Boxplots of the main SLN features f ∈ Fs collected for each dataset. (a)-(c) are comparing across courses, while (d)-(f) are
comparing the discussion similarity values sv,u across several units u in each course. In (a)-(c), we see that SLN activity in VE is
significantly lower than in the other courses. In (d)-(f), we see that content in certain units (e.g., unit 6 in VE) stands out as being
the most correlated with learner discussions.

those selected by correlation analysis tended to yield the
best results. In running correlation analysis on A(15) (i.e.,
the full feature matrix built from all the course data), the
selected behavioral features for each course are summarized
in Table 3. We choose the top ten because prediction quality
saturates beyond this point (for an analysis on the effect of
varying the number of features, see Sec. 5.2). Noting that
each of these ten have positive correlations with the course
outcome, we make a few observations:
(i) Of the content features, the Dashboard quantities are more
correlated: Engagement, time spent, and completion are more
correlated with the outcome than the events in Fc. With the
exception of enter, events do not appear in the top-10.
(ii) The SLN features are more correlated than the content features:
Features in Fs are more frequent in these lists than those in
Fc. The discussion post similarity features sv,u are notably
important. The more relevant a learner’s posts, the more
familiar the learner is with the course content, which the
instructors are likely to pick up on. This is consistent with
the fact that the similarity values exhibit large variation in
Fig. 7 (all except six of the ranges are ≥ 0.5).
(iii) Word count is a correlated feature in all courses: A higher
word count for a learner tends to imply a higher probability
of successfully passing the course. Given that this feature is
independent of any course content and/or structure, it may
be useful for course-independent prediction algorithms.

4 PREDICTION AND ANALYTICS

We now apply the feature sets from Sec. 3 to prediction.
We first describe the algorithms and procedures used for
evaluation (Sec. 4.1), and then present and discuss our
results (Sec. 4.2 and Sec. 4.3.) Subsequently, in Sec. 5 we
will show examples of behavioral analytics (Sec. 5.1) and
also study the effect of feature selection (Sec. 5.2).

4.1 Classifiers and Procedure
Prediction classifiers. We consider six classifiers: K-Nearest
Neighbor (KNN), Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA), Random Forest (RF), Forward
Neural Network (ANN), and Gradient Boosting (XGB). We
choose these for a few reasons. First, they have each demon-
strated good performance in predicting student outcomes
in other works, e.g., KNN in [16], SVM in [2], [7], LDA in

[17], [18], RF in [19] (though only in [2], [7] with behavioral
features), ANN in [20], and XGB in [10], [21].

Second, given their optimization approaches, they are
typically applied to different feature types, and we are using
a combination of indicator, integer, and continuous features;
each of these classifiers has different learning properties that
make it better suited in different scenarios. For instance, RF
is an ensemble tree method applied to any type of feature,
whereas XGB is also an ensemble method that boosts weak
data. SVM uses a kernel function to find the optimal hyper-
plane separation and is typically applied to non-indicator
features. LDA has been seen to work better on continuous
quantities given that it finds a linear combination of the
features which best separates groups [18].

Third, these classifiers each have a relatively small num-
ber of parameters to train (particularly RF and XGB), which
is useful in preventing overfitting on the small training
sample sizes of short-courses. While neural networks do
not have this property, we consider them for completeness;
we chose ANN over other possibilities because it has been
seen to perform well on high dimensional data. We did
also investigate other approaches (Convolutional Neural
Networks and Recurrent Neural Networks) but found sub-
optimal performance on our datasets.
Parameters: For SVM, we use the radial basis function (rbf)
kernel. 8 The parameters for SVM (kernel standard deviation
(η) and regularization penalty (C)), RF (number of tress (τ )
and variables (δ)), KNN (number of neighbors (κ)), XGB
(maximum depth of tree (ν) and learning rate (υ)), and ANN
(learning rate (υ) and hidden layer size (ι)) are tuned during
the cross validation procedure described below.
Metrics. We primarily consider AUC (i.e., the area under
the ROC curve) and Type II error (i.e., fraction of fails that
are incorrectly predicted as passes) as evaluation metrics.
In practice, we are interested in identifying learners who
are at risk of failing in advance so the instructor can be
notified. Consequently, we seek a classifier that obtains a
low Type II error while maintaining a high AUC, so that
we would minimize the number of failing learners that we
misclassify (low Type II error) while not generating too
many false alarms (high AUC). We will discuss the exact
selection criteria of the algorithms further in Section 4.3. For

8. We found the radial kernel to obtain the better results.
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f VE ES LS
1 Word Count Post Similarity to Unit 2 Post Count
2 Post Similarity to Unit 5 Post Similarity to Unit 3 Post Similarity to Unit 3
3 Post Count Post Similarity to Unit 8 Post Similarity to Unit 7
4 Time Spread Unit 10 Article Engagement Post Similarity to Unit 5
5 Session Count Word Count Post Similarity Between to Unit 2
6 Post Similarity to Unit 7 Unit 10 Engagement Post Similarity to Unit 4
7 Post Similarity to Unit 6 Unit 11 Article Engagement Word Count
8 Unit 5 Slideshow Completion Unit 11 Engagement Time Spread
9 Unit 5 Slideshow Engagement Unit 10 enter Unit 11 Article Engagement
10 Post Similarity to Unit 1 Unit 11 Article Completion Rate Unit 11 Engagement

TABLE 3: List of the 10 behavioral features selected based on correlation analysis on the full matrix A(15) for each course. All of
these features have positive correlations with outcome, and they are ordered from highest to lowest.

VE
k zk(%) top five words
1 12.7 employee problem toxic manage hero
2 12.5 jacki liza work steven member
3 11.8 situation always difficult address handle
4 9.8 conversation team behavior solution learn
5 9.5 behavior step toxic culture consequence
6 9.4 villain question workplace complete post
7 9.1 action plan start discuss point
8 9.0 time person set expect thought
9 8.7 negative civil work avoid comment
10 7.5 general person position attitude supervisor

ES
k zk(%) top five words
1 13.4 key direct email consider prefer
2 13.2 communicate skill effect talk point
3 11.4 inform question gather time option
4 10.6 person word hear assumption success
5 9.6 listen understand paraphrase focus train
6 9.1 relationship message impact intent build
7 9.0 differ face program improve colleague
8 8.6 express speaker person describe step
9 8.1 assert idea tip mission statement
10 6.9 content complete discuss open earn

LS
k zk(%) top five words
1 14.9 leadership style kill train role
2 13.5 people style work direct approach
3 13.5 team motivates focus challenge task
4 12.3 time award emotion leader language
5 10.7 high place change decision result
6 8.6 leadership reality stress train role
7 7.2 inspire authentic opportunity task trust
8 6.8 discuss complete present post choice
9 6.7 something adopt goal adapt event
10 5.8 great true welcome angry annoy

TABLE 4: Summary of the topics with |K| = 10. Given for each
topic k are its support zk and highest five constituent words.
completeness, we also report Accuracy (Acc, i.e., fraction of
all predictions that are correct).
Cross validation. For training and evaluation, we (i) divide
the dataset into folds (K = 5) stratified such that each
fold has the same proportion of passes and fails, (ii) train
and tune the algorithms through cross-validation, choosing
the set of parameters with highest average accuracy, 9 and
(iv) evaluate on the holdout fold, similar to the procedure
detailed in [2]. The metrics we report are averaged over
several runs, to obtain a general estimate of quality.

4.2 End-of-Course Prediction
In Table 5, we show the prediction results for each algorithm
on (a) the full feature set A(15), (b) the SLN-only As(15),

9. We test η ∈ {0, 1, ..., 10}, C ∈ {1E-5, 1E-4, ..., 1E5}, κ ∈
{1, 2, ..., 10}, τ ∈ {10, 11, ..., 300}, υ ∈ {0.001, 0.002, ..., 0.02}, ν ∈
{3, 4, ..., 7}, ι ∈ {2, 3, ..., 30}, δ ∈ {1, 2, ..., 10}.

and (c) the content-only Ac(15) for each course. We make a
few observations:
Behavioral data contains signals for outcome prediction.
Considering the full (combined) feature matrix A(15) in (a),
we see that at least one of the algorithms is able to obtain
a high quality prediction, which indicates that behavioral
data can be used to make effective outcome predictions even
when no assessment data is available and the sample size is
limited. More specifically, for at least one algorithm in each
course the AUC is larger than 0.85, while the Type II error
is less than 0.11, meaning that less than 11% of the fails
would be incorrectly identified. RF, in particular, is able to
obtain consistently high quality on the combined feature set
(a) for each of the courses (Acc > 0.81, AUC > 0.72, Type II
< 0.18). The repeatability across independent datasets gives
evidence that our methodology will work when applied to
other short-courses as well, and and has the potential to
obtain similar/better performance on larger datasets.
SLN features are more useful than content features by
the end. Comparing the quality of predictions using SLN
features (As(15)) vs. content features (Ac(15)) in Table 5, we
see that while the AUCs are comparable across courses and
algorithms (SLN being higher in 9/18 cases), predictions on
SLN features obtain substantially lower Type II errors (SLN
is lower in 16/18 cases); in particular, the best cases achieved
in each course are less than 0.20 for clickstream as opposed
to less than 0.11 for SLN. This implies that by the end of the
course, classifiers using the SLN features are better able to
avoid predicting those who fail as passing incorrectly.
Algorithm choice varies based on course and feature set.
With the exception of ANN, there is at least one pair of
course and feature set for which each algorithm performs
best (or close to best). We speculate that the poor perfor-
mance of neural networks is due to the small sample sizes
of these courses, as opposed to other predictive learning
analytics settings where they have obtained high quality,
e.g., in forecasting cumulative grades from clickstream data
in Massive Open Online Courses (MOOCs) [22]. Another ex-
ample is [10] which used an ensemble of methods including
both NN and XGB to predict course dropouts in MOOCs;
again, the complexity and hyperparameters of ANN may re-
quire substantially more data points to correctly train. Also
note that SVM demonstrates particularly low quality on the
content features (AUC ≤ 0.5 in two cases). Interestingly,
this is in contrast to results in [2] which showed SVM to
obtain high AUC (> 0.75) with similar features in predicting
quiz performance in MOOCs. In that application, however,
there are orders-of-magnitude more samples for training,
and each learner appears in the dataset multiple times,
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Course Algo Acc AUC TypeII

VE

RF 0.835± 0.011 0.727± 0.011 0.101± 0.011
LDA 0.858± 0.012 0.895± 0.012 0.092± 0.012
SVM 0.810± 0.001 0.500± 0.001 0.196± 0.001
KNN 0.865± 0.010 0.796± 0.010 0.068± 0.010
ANN 0.788± 0 0.742± 0 0.135± 0
XGB 0.915± 0.007 0.907± 0.005 0.010± 0

ES

RF 0.827± 0.012 0.824± 0.012 0.179± 0.012
LDA 0.750± 0 0.843± 0 0.25± 0
SVM 0.826± 0.011 0.829± 0.011 0.086± 0.011
KNN 0.817± 0.001 0.821± 0.008 0.222± 0.009
ANN 0.489± 0 0.451± 0 0.255± 0
XGB 0.826± 0.018 0.862± 0.010 0.255± 0.017

LS

RF 0.813± 0.012 0.808± 0.012 0.179± 0.012
LDA 0.781± 0.012 0.851± 0.012 0.216± 0.012
SVM 0.817± 0.010 0.822± 0.010 0.102± 0.010
KNN 0.821± 0.012 0.562± 0.012 0.190± 0.012
ANN 0.800± 0 0.747± 0 0.306± 0
XGB 0.785± 0.018 0.660± 0.028 0.306± 0

(a) Combined
Course Algo Acc AUC TypeII

VE

RF 0.857± 0.009 0.749± 0.009 0.093± 0.009
LDA 0.752± 0.048 0.731± 0.048 0.061± 0.048
SVM 0.804± 0.007 0.503± 0.007 0.186± 0.007
KNN 0.873± 0.011 0.786± 0.011 0.080± 0.011
ANN 0.788± 0 0.474± 0 0± 0
XGB 0.764± 0.021 0.349± 0.144 0± 0

ES

RF 0.789± 0.007 0.790± 0.007 0.243± 0.007
LDA 0.800± 0 0.828± 0 0.273± 0
SVM 0.816± 0.012 0.821± 0.012 0.087± 0.012
KNN 0.753± 0.002 0.746± 0.002 0.250± 0.002
ANN 0.755± 0 0.649± 0 0.353± 0
XGN 0.747± 0.023 0.727± 0.002 0.302± 0.024

LS

RF 0.850± 0.011 0.849± 0.011 0.130± 0.011
LDA 0.785± 0.0137 0.853± 0.014 0.192± 0.014
SVM 0.828± 0.012 0.831± 0.012 0.113± 0.012
KNN 0.828± 0.010 0.503± 0.010 0.186± 0.010
ANN 0.800± 0 0.710± 0 0.306± 0
XGB 0.775± 0.024 0.634± 0 0.306± 0

(b) SLN
Course Algo Acc AUC TypeII

VE

RF 0.806± 0.010 0.594± 0.010 0.156± 0.010
LDA 0.830± 0.012 0.861± 0.012 0.102± 0.012
SVM 0.809± 0.001 0.500± 0.001 0.191± 0.001
KNN 0.802± 0.010 0.630± 0.010 0.141± 0.010
ANN 0.606± 0 0.545± 0 0.308± 0
XGB 0.854± 0.026 0.894± 0.008 0.115± 0.030

ES

RF 0.812± 0.005 0.820± 0.005 0.261± 0.005
LDA 0.800± 0 0.869± 0 0.273± 0
SVM 0.630± 0.009 0.609± 0.009 0.280± 0.009
KNN 0.741± 0.005 0.755± 0.005 0.345± 0.005
ANN 0.766± 0 0.754± 0 0.039± 0
XGB 0.677± 0.023 0.716± 0.028 0.373± 0.030

LS

RF 0.722± 0.013 0.726± 0.013 0.204± 0.013
LDA 0.679± 0.014 0.725± 0.014 0.266± 0.014
SVM 0.515± 0.009 0.490± 0.009 0.468± 0.009
KNN 0.644± 0.014 0.635± 0.014 0.302± 0.014
ANN 0.705± 0 0.695± 0.002 0.265± 0
XGB 0.577± 0.020 0.650± 0.013 0.359± 0.036

(c) Content
TABLE 5: Prediction quality of the algorithms on the content,
SLN, and combined feature sets at the end of the course
(Ac(15), As(15), and A(15)). For each metric, we report the
average and standard deviation across 50 cross validation trials.
The algorithm obtaining the best value for each course-feature-
metric triple is bold.

which allows the SVM to include learner/quiz indicator fea-
tures. With SLN features, though, SVM’s quality increases
substantially, and for the combined case it is arguably the
highest quality algorithm in two of the datasets (ES and LS).

4.3 Day-by-day Prediction

In Fig. 8, we evaluate the early detection capability of the
full feature set for each course. To do this, we choose the
algorithm with highest quality on A(15) for each course
and each feature type from Table 5. Focusing on AUC and
Type II error, the selection criteria is as follows: maximize

AUC subject to Type II error being ≤ 0.1 rounded to one
decimal place; referring to Table 2, this threshold means that
only about 5 learners in each course who actually fail will be
misclassified by the end of the course. With that algorithm
identified, we perform training and evaluation over A(n)
for n ∈ {1, ..., 15}. In order to evaluate the effect that each
group of features has over time, we repeat this over As(n)
and Ac(n), and show the resulting AUC by day in Fig. 9.
From these plots, we make a few observations:
Behavioral data has an early detection capability. In Fig.
8 we can see that, as expected, the quality of the predictors
tends to rise from the beginning to the end of the course,
with AUC and Acc generally increasing and Type II error
decreasing.10 There is a tradeoff, then, between how early
the predictions are applied and the expected quality. The
following are two interesting points along the tradeoff in
each course at which forecasts can be made in advance:
(i) Detection midway through: The AUC hits a local maximum
around the midpoint of the courses (day 6 or 7), hitting
approximately at 0.7 in each case. The corresponding Type
II errors are 0.3 or lower, indicating that roughly 70% or
more of the learners that will ultimately fail will be correctly
identified as such at this point. This is right around the time
of the first live event in the courses (see Sec. 3.2.1), which
the instructors indicated would be a useful point for the
information to be provided.
(ii) Detection three-quarters through: In VE and ES, the AUC
saturates around three-fourths of the way through the
course (day 10 or 11), at which point it is higher than
0.8 in both cases, exceeding 0.9 in VE. The Type II errors
have also dropped to 0.1 or below, meaning that we can
expect 90% or more of fails to be correctly identified. If
the final stretch of the course provides sufficient time for
instructor intervention, then this is an ideal point to apply
the algorithms.
For “earliest” detection, content features have an advan-
tage. After the first half or so of each course in Fig. 9, we see
that SLN features obtain higher AUC than content features
in ES and LS, consistent with the observation in Sec. 4.2.
For all three courses, the content features provide higher
quality early. This indicates that content data may be more
useful for detections that must be provided at the earliest
stages of a course, consistent with [2] for MOOCs. This
phenomenon can be explained by the fact that a course’s
SLN develops and evolves over time. Interestingly, however,
at least 10% of the social data comes in the last day, yet they
are still important for prediction far prior to the end. We will
investigate this through our feature analysis next in Sec. 5.

In practice, when an instructor is provided with an early
detection of potentially failing learners, the next step would
be to reach out to them. Type II error gives an expected
fraction of failing learners that will not be detected. Type I
error, on the other hand, would give the false alarm rate, i.e.,
the fraction of learners reached out to that would have gone
on to pass. We consider this to be less critical since a learner

10. The exception to this is in VE, where XGB quality oscillates until
day 9. This is likely due to the joint effect of three factors that can
cause overfitting here: (i) the small amount of data available towards
the beginning, (ii) the imbalance of this particular dataset (which has
a fail rate of 81%), and (iii) the negative binomial log-likelihood loss
function of XGB not translating exactly to these classification metrics.
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(a) XGB applied to VE (b) SVM applied to ES (c) SVM applied to LS

Fig. 8: Variation in prediction quality by day for each course, using the full feature set. At day n, the predictor is using A(n) for
training. The AUCs reach 70% by day 7, which shows that behavioral features can be used for early detection in short-courses.
Note that the line plots may overlap in some cases, e.g., accuracy and AUC for later days in (b) and (c).

(a) VE (b) ES (c) LS

Fig. 9: Variation in prediction quality by day for each course, using the content and SLN features. The algorithm achieving the
highest performance for is used in each case. Specifically, we use XGB for content in VE, KNN for SLN in VE, SVM for both types
in ES, and RF for both types in LS. In ES and LS, the SLN features have higher quality beyond the first few days, while the content
features are useful for earliest detection. In VE, the content features have higher quality except in the middle of the course.

predicted to fail would need to be exhibiting characteristics
of the failing group (e.g., someone procrastinating on key
activities), and thus may still benefit from being reached
out to. Still, for the selected algorithm in each course, the
number of false alarms generated on A(15) was only 6.1,
12.1, and 12.3 for VE, ES, and LS respectively.

5 FEATURE ANALYTICS

5.1 Feature Correlation Analysis

We also analyze how the correlations of the top features
vary over time. In practice, this can give instructors insight
into which specific behaviors are most related to eventual
learning outcomes at different points and lead to recom-
mendations to improve success.

The correlations of the top 5 features in Table 3 are
plotted over time in Fig. 10. We make a few observations:
Rank convergence. The feature correlations generally be-
come stronger over time with more data, as expected. The
increases are not monotonic, however. There are points in
time where learners who end up failing are participating in
the discussions, so the instructors may attempt to further
engage the learners during these periods.
Content discussion recommendations. As discussed in Sec.
3.3, the top features for each course include discussion
post similarity to specific units. Analyzing the trends of
these correlations leads to some interesting findings that
can be turned into SLN discussion recommendations. In LS,
notice that “post similarity to unit 7” has remarkably low
correlation compared with the other features until day 9,
even though by the end it becomes the third most correlated.
This is likely because this unit is far down the syllabus,

so learners are not focusing on this content until later;
therefore, it may be beneficial to give advanced warning
on the importance of this content.
SLN developments. As discussed in Sec. 4.3, although the
network matures over time, the SLN features are still in-
dicative throughout most of the course period. Investigating
the correlations the SLN features in Fig. 10, we see that for
all courses, even part of the SLN data comes at the end of
the course, the correlation of these features have remained
relatively constant around course midpoint. This suggests
that the maturing SLN has early signals that are predictive
of course outcomes even when it is still developing.

5.2 Feature Selection Analysis
Recall from Sec. 3.3 that we have used the top ten features in
training the predictors, with the specific subset determined
from correlation analysis on the full feature set F . Here, we
investigate the impact of the number of the features selected
on the results; while adding more features will increase the
information available for training, it also reduces efficiency
and makes the models more prone to overfitting. We train
each algorithm over features A(7) from the LS dataset
after the first week, since LS has the most users and most
balanced Pass/Fail outcomes.

Fig. 11 shows the results. The values shown in the plots
at feature f is using the f -most correlated features from F
for training. We make the following observations:
Beyond f ≈ 10, performance tends to vary more sub-
stantially. For LDA, SVM, and XGB, the metrics vary sig-
nificantly (drop in quality with few exceptions) when the
number of features increases beyond 10. This suggests over-
fitting, which is important to avoid in the our prediction.
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(a) VE Features Correlation (b) ES Features Correlation (c) LS Features Correlation

Fig. 10: Variation in feature correlation by day for the top 5 correlated features for each course, corresponding to Table 3 (“Sim UX”
stands for “post similarity to unit X”). Correlation gradually increases through days 10− 11 in each case, where it stabilizes.

RF performance is reasonably independent of f . In Fig.
11(a), the metrics do not change substantially, especially
compared to the variations in the other algorithms. This may
be explained by the fact that RF works with information
gain, which already considers a form of feature selection.
ANN performance remains constant for f ∈ [5, 14]. The
metrics, in particular accuracy and Type II error, remain
consistent regardless of the number of features in this range.
This suggests that the activation function to the hidden layer
of the ANN may be able to filter out additional information,
similar to the information gain in RF. Nonetheless, when
additional features are added to the network, the increasing
dimension (i.e., the increasing number of hyper-parameters
to train) results in lower performance, similar to what is
seen for in LDA and XGB.

In selecting the number of features, we aim to optimize
quality and stability in generalizing to new data. Therefore,
in hindsight, we conclude that 10 was a reasonable choice.

6 RELATED WORK

This work is generally related to data mining and machine
learning for education, which has been increasingly studied
over the past decade (see [23], [24] for surveys). In this
section, we discuss prior research on learning outcome pre-
diction (Sec. 6.1), and specific works on content clickstream
(Sec. 6.2) and social learning (Sec. 6.3) feature mining.

6.1 Learning Outcome Prediction

Predictive learning analytics methods have been developed
to forecast different attributes of learners in advance, mainly
for students in higher education and MOOC courses (see
[25] for a survey). These include how learners will perform
on assessments [7], [22], [26], [27], learners’ risk of obtaining
adverse outcomes [28], [29], learners’ final grades [8], [12],
[30], [31], and learner attrition [6], [10], [12]. The latter was
also the focus of KDD Cup 2015 [10].

Different from these works, we focus on predicting bi-
nary (pass/fail) outcomes in short-courses, a type of course
characterized by short timescales and a lack of intermediate
quiz/assessment data. In the absence of assessment mea-
surements, prior quiz-based outcome prediction models are
not directly applicable; instead, our method turns learners’
content clickstreams and social learning data into features
for binary outcome classification. Additionally, the content
file types we consider in this work – interactive slideshows,

articles, and PDFs – are common in corporate training
but different from standard lecture video formats, and our
system enables collection of data on these file types too.

6.2 Content Feature Mining
Researchers have mined behavioral features from student
clickstream data. Some methods have focused on ex-
ploratory analysis of clickstreams [32], [33], [34]; [34] mod-
eled raw numbers of clicks by students each day, while
[33] used Markov modeling to learn transitions between
learning activities. We are instead interested in developing
features for outcome prediction. In this regard, some works
have focused specifically on using video-watching behavior
for grade prediction in MOOCs [2], [6], [7]; [7] defined ag-
gregate quantities like fraction of time spent and number of
rewinds, while [2], [6] searched for recurring subsequences
of click actions in student behavior. Others have used click-
stream features across multiple content types for outcome
prediction [10], [28]; [10] mined learner activities across
course content, forums, and wikis for drop-off and quiz
prediction, while [28] employed mixture models to group
students based on time spent for predicting certification.

Our work is perhaps most similar to [7], [28] in regards
to using clickstream data for early detection. The short
timescales of our courses pose additional modeling chal-
lenges that we overcome by defining features for each piece
of content separately, and performing day-by-day predic-
tions to capture learners re-visiting content, rather than the
unit-by-unit scheme proposed in [7]. Further, while training
an SVM on behavioral features was seen to work well in [7],
it obtained low quality on our datasets. In [28], the authors
also study early detection for a binary outcome, but we
define several features beyond time spent (e.g., engagement)
that we find more predictive in short-courses.

6.3 Social Learning Features
Several recent studies have considered the Social Learning
Networks (SLN) in different learning scenarios, e.g., MOOCs
[9], [12], [13], online courses [31], [35], [36], Q&A sites [4],
and enterprise social networks [37]. Similar to the discussion
forums in online courses [9], SLN emerge on Q&A sites
through users asking and answering questions, so analysis
methods naturally overlap between these scenarios.

Some of these prior works have focused on the SLN
itself, such as exploratory analysis [4], [37] and optimization
of interactions [9]. We are focused instead on using features
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(a) RF (b) SVM (c) LDA

(d) KNN (e) XGB (f) ANN

Fig. 11: Effect of the number of features selected on the prediction quality of each algorithm at the critical halfway point A(7), for
dataset LS. In hindsight, this shows that |F| = 10 was a reasonable choice for feature selection in Sec. 3.3.

that can be extracted from the SLN for outcome prediction,
similar to [12], [13], [31]. Considering these in particular,
[12] built a probabilistic graphical model to predict grades
and completion from learner post and reply frequencies, [31]
built predictors of final performance from participation in-
dicators in both quantitative, qualitative and social network
forums, and [13] predicted whether instructor intervention
will be needed from semantics and explicit references to
course files. In addition to structural SLN attributes, our
method defines other types of features not present in these
prior works. These include the topic similarity between
learner posts and the course content, as well as the content
features measuring how learners interact with the course
material. In our short-course scenarios, we find that the
topic similarity features are particularly predictive, and that
the content features are useful for earliest detection.

7 CONCLUSION AND FUTURE WORK

We developed a methodology for predicting learning out-
comes from learner behavior in online short-courses. The
lack of intermediate assessments coupled with the small
enrollments in this type of course makes the development of
predictive learning analytics particularly challenging. Our
method relies solely on behavior-based machine learning
features obtained by processing measurements collected
during the learning process, including a learner’s interaction
with the content and with one another in Social Learning
Networks. Evaluating on data collected from three short-
courses and using models such as gradient boosting that can
work under sparse conditions, we obtained high prediction
quality by the middle stages of the courses, underscoring
the capability of our method to provide early detection to in-
structors. We also observed that SLN attributes became the
more useful set of behaviors for prediction over time, while
the content attributes provided better quality for “earliest”
detection in the first few days. Further, we found that our
method can generate behavioral analytics for instructors.

Future work may investigate other content and SLN
features, as well as other classifiers to further enhance

performance. We will also incorporate these methods into
our Dashboard, so that instructors can access the predictions
in an online manner during future course sessions. This will
allow us to collect feedback, and to measure changes in
pass rates resulting from interventions made based on the
predictions and analytics – the ultimate measure of efficacy.
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