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AbstrAct

Machine learning (ML) tasks are becoming 
ubiquitous in today’s network applications.  Fed-
erated learning has emerged recently as a tech-
nique for training ML models at the network edge 
by leveraging processing capabilities across the 
nodes that collect the data. There are several chal-
lenges with employing conventional federated 
learning in contemporary networks, due to the 
significant heterogeneity in compute and com-
munication capabilities that exist across devices. 
To address this, we advocate a new learning par-
adigm called fog learning, which will intelligently 
distribute ML model training across the continu-
um of nodes from edge devices to cloud servers. 
Fog learning enhances federated learning along 
three major dimensions: network, heterogeneity, 
and proximity. It considers a multi-layer hybrid 
learning framework consisting of heterogeneous 
devices with various proximities. It accounts for 
the topology structures of the local networks 
among the heterogeneous nodes at each net-
work layer, orchestrating them for collaborative/
cooperative learning through device-to-device 
communications. This migrates from star network 
topologies used for parameter transfers in feder-
ated learning to more distributed topologies at 
scale. We discuss several open research directions 
toward realizing fog learning.

IntroductIon
The modern era has witnessed an explosion in 
the number of intelligent wireless devices capa-
ble of connecting to the Internet and forming ad 
hoc networks. The improved processing capabili-
ties of these Internet of Things (IoT) devices cou-
pled with rising user demands for data-intensive, 
latency-sensitive tasks has motivated fog comput-
ing. Fog computing is an emerging architecture 
that aims to orchestrate and manage processing 
resources across nodes in the cloud-to-things con-
tinuum, encompassing the cloud, core, metro, 
edge, clients, and things [1]. Security and priva-
cy of user data is also an important part of this 
emerging paradigm [2].

Machine learning (ML) has attracted significant 
recent attention in networking applications, given 
its potential to provide fast and autonomous deci-
sion making for 5G, 6G, and future wireless tech-

nologies [3]. ML techniques generally require large 
datasets for model training, especially in the newer 
category of deep learning. This data is generated at 
end-user devices as they interact with applications, 
and then traditionally is transferred to a central 
data center, which carries out the model training. 
Consider, for example, automated facial recogni-
tion carried out by social media platforms today: 
when a user uploads a photo, a prediction is made 
of who is in the image by applying a model trained 
over billions of samples at a data center. The user’s 
feedback on this prediction (e.g., whether it is cor-
rect) informs further model refinement.

Centralized ML model training is prohibitive in 
many emerging network applications, however. 
In particular, transferring large volumes of data 
samples from the end users to the cloud has the 
following drawbacks:
1. For battery-limited devices such as smart-

phones, unmanned aerial vehicles (UAVs), 
and wireless sensors, uplink data offloading 
can consume prohibitive amounts of energy.

2. For latency-sensitive applications, the round-
trip time of data transfer, model training/
updating, and decision making can be pro-
hibitively long.

3. In privacy-sensitive applications, end users 
may not be willing to share their raw data.
These limitations have motivated work on 

distributed ML model training, where federated 
learning has received significant attention [4].

FederAted LeArnIng

The standard operation of federated learning is 
depicted in Fig. 1. To train an ML model (e.g., 
a neural network), two steps are repeated in 
sequence:
1. Local learning, in which each worker device 

updates the parameters of the ML model 
(e.g., weights on neurons) using its collected 
dataset

2. Global aggregation, in which a main server 
determines the new global model from the 
local updates and synchronizes the devices 
with this aggregated version

The local learning at each device typically con-
sists of gradient descent iterations to update the 
model. The global aggregation is typically an 
averaging of the local parameters, which may be 
weighted depending on the perceived quality of 
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devices’ updates [4]. A key property of federated 
learning is that the data itself is never transferred 
between the devices and the server, which further 
reduces communication demands and mitigates 
privacy concerns associated with data sharing.

The standard implementation of federated 
learning causes performance issues in contem-
porary fog networking environments, however. 
Next, we outline the key considerations for devel-
oping network-aware techniques for distributing 
ML tasks and initial works that have attempted to 
address them.

desIgn consIderAtIons For netWorK-AWAre mL
Communication Heterogeneity: Most of the 

IoT devices engaged in ML — cellular phones, 
smart vehicles, wireless sensors, UAVs, and so 
on — are mobile, with significant heterogeneity 
in their communication abilities. Channel quali-
ties will change over time and as devices move 
through the network. As the achievable uplink 
and downlink data rates of the system will vary 
for each node over time, they must be taken into 
consideration in the design of distributed ML 
techniques. These heterogeneous communication 
characteristics have motivated several recent stud-
ies on federated learning for wireless networks 
(e.g., [5]). Additionally, they have motivated stud-
ies on communication-efficient federated learn-
ing through the techniques of quantization (i.e., 
compressing model updates prior to transmission) 
and sparsifi cation (i.e., transmitting only some ele-
ments of the parameter vectors) [4].

Computation/Storage Heterogeneity: Wire-
less devices exhibit heterogeneity in their process-
ing equipment and availability of their resources. 
Thus, the time required to perform a single local 
update will vary from one device to another. This 
has motivated studying the eff ects of device com-
pute delays and the existence of stragglers on the 
time required to train ML models [5]. Methods 
that have been proposed to resolve these eff ects 
mostly rely on intelligent selection of device 
training participation. Techniques for mitigating 
compute limitations have also been studied more 
generally (e.g., through model compression [6]).

Privacy and Security: Although federated 
learning eliminates the need to transmit raw data, 
it is possible for sensitive information to be leaked 
through reverse engineering of model parameters 

[7]. This has motivated investigations into adapt-
ing well-known privacy and security preservation 
techniques, such as diff erential privacy and func-
tional encryption, to federated learning [8].

Joint Performance Metrics: The performance 
of an ML task is typically measured through the 
convergence speed and the accuracy of the result-
ing model. In network-aware ML, the previous 
three design considerations suggest additional per-
formance metrics. But these objectives tend to 
compete with one another; for example, a wireless 
network device processing more gradient updates 
may improve resulting model quality, but requires 
more energy consumption. Thus, techniques for 
network-aware ML must consider a joint optimiza-
tion among the objectives of minimizing network 
resource costs, maximizing resulting model quality, 
and maximizing privacy/security, with different 
importance assigned to each objective depending 
on the application [7, 9].

dImensIons oF InnovAtIon For netWorK-AWAre mL
Compared to federated learning, fog learning is 
defi ned by the three dimensions of network, het-
erogeneity, and proximity:
1. It considers the networks and topology struc-

tures among the devices and incorporates 
collaboration/cooperation among local 
wired/wireless nodes using device-to-device 
(D2D) communications.

2. It considers the heterogeneity of nodes 
through the cloud-to-things continuum, in 
terms of computation capability and local 
data distributions.

3. It exploits the proximity of resource-limited 
nodes to resource-abundant nodes to opti-
mize ML training.

motIvAtIng A neW ArchItecture For 
netWorK-AWAre LeArnIng

Conventional federated learning suff ers from a series 
of limitations when implemented over fog networks. 
In this section, we explain these limitations, motivat-
ing a new paradigm for distributed ML.

FederAted LeArnIng: LImItAtIons In Fog envIronments

Consider training and managing a data-intensive, 
latency-sensitive ML task over a large-scale fog 
network. We face the following key limitations 
using federated learning as the solution.

Multi-Layer Nature of Large-Scale Learning:
Under federated learning, global aggregations 
would be performed at the main data center. 
When smartphones, smart vehicles, or other con-
nected edge devices perform their local updates, 
their cellular base stations (BSs), roadside units 
(RSUs), or analogous access points cannot directly 
transfer these learned parameters to the main serv-
er, which will be in a data center located possibly 
thousands of miles away. Instead, one pragmatic 
approach would be to consider multiple aggre-
gations at different scales (e.g., edge servers in 
localities, cities, states) before fi nally reaching the 
data center. Similarly, for a team of data-gather-
ing UAVs in an area with no cellular coverage, the 
local learning parameters may fi rst be aggregated 
by a team of miniature UAVs, then multiple heavier 
UAVs, and then a high altitude platform (HAP). 
The HAP would transmit the aggregated models to 

Figure 1. Left: Conventional “star topology” of federated learning. Right: An 
abstract model of data fl ow in federated learning.

Local Dataset

Workers/
Devices

Aggregation

Main Server

Local Learning 
using Gradient 

Descent

Main Server

Workers/Devices

W=!"#!$#⋯#!&
&

…w1 w2 wJ

Local 
Learning

W W W

Ww1,w2,…,wJ

HOSSEINALIPOUR_LAYOUT.indd   42HOSSEINALIPOUR_LAYOUT.indd   42 12/9/20   3:57 PM12/9/20   3:57 PM

Authorized licensed use limited to: Purdue University. Downloaded on January 03,2021 at 15:39:32 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • December 2020 43

an edge server through a backhaul network. Once 
at the edge server, these parameters could traverse 
the aforementioned hierarchy to reach the main 
server. This potential multi-layer network structure 
for model aggregation is depicted in Fig. 2. 

Overloading Heterogeneous Network 
Resources: Current cellular BSs and RSUs are not 
designed to handle model uploads from large 
numbers of active devices simultaneously. Train-
ing deep neural networks (DNNs) with federat-
ed learning can require participation from many 
active devices, as high complexity models require 
large datasets [6]. Moreover, given the hetero-
geneity of IoT devices, each participating device 
may only be capable of processing a small set 
of samples for a high-dimensional model. This 
calls for a learning architecture that optimizes the 
choice of devices participating in model upload-
ing based on current network conditions.

Device Collaboration/Cooperation: Feder-
ated learning ignores the topology structures 
among the devices and the possibility of collab-
oration/cooperation among the devices with-
out engaging the main server. Enabling direct 
communication between devices in local neigh-
borhoods of each network layer could lead to 
significant power and bandwidth savings by 
reducing uplink transmissions to nodes in the 
higher layers. This calls for a framework that 
explicitly considers D2D communications being 
enabled in 5G-and-beyond wireless. We refer 
to all communications between devices/nodes 
within a single network layer as D2D, examples 
of which are depicted in Fig. 2.

Strict Privacy Assumptions: Federated learn-
ing guarantees that each device’s local dataset 

is never transferred over the network. While this 
is important in privacy-sensitive applications, in 
many cases users may be willing to share por-
tions of their datasets for ML training, which 
can be useful when there is a combination of 
resource-hungry and resource-rich devices. For 
example, a smart car attempting to train an object 
classifier with a limited onboard processor is likely 
willing to offload its sensor data to a more com-
putation-powerful car to expedite the training 
process if the channel conditions are reasonable. 
This calls for a learning framework that can adapt 
based on privacy needs.

From FederAted to Fog LeArnIng

Given these limitations, we propose a new learn-
ing paradigm called fog learning. As opposed 
to federated learning, which is based on a star 
topology of device-server interactions, fog learn-
ing explicitly considers the network and topology 
structures among the devices and enables intelli-
gent device collaborations/cooperations through 
data and parameter offloading. This hybrid learn-
ing paradigm exploits the multi-layer structure 
of fog networks to optimize performance in the 
presence of heterogeneous network resources. 

There are some recent works on hierarchi-
cal federated learning [10, 11]. These works are 
mainly focused on specific two-tiered network 
structures above wireless cellular devices, for 
example, edge clouds connected to a main serv-
er [10] or small cell and macrocell BSs [11]. Fog 
learning generalizes this concept to a multi-lay-
er structure that encompasses all IoT elements 
between the end devices and the main server. 
Moreover, fog learning introduces collaborative/

Figure 2. A schematic of model aggregation stages for a large-scale ML task in network-aware learning. The main server aggregates 
parameter updates from multiple cloud servers. Before reaching these cloud servers, local models trained by devices go through 
multiple layers of aggregations. The devices can learn cooperatively via direct D2D communications, through which model param-
eters, datasets, or both are exchanged.
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cooperative model training via D2D communica-
tions among the devices at diff erent layers of the 
network hierarchy.

Fog LeArnIng: A muLtI-LAyer 
hybrId LeArnIng PArAdIgm

In this section, we defi ne fog learning in terms of 
its multi-layer structure and hybrid learning char-
acteristics.

muLtI-LAyer netWorK ArchItecture

Fog learning is a multi-layer learning architecture 
over a fog network. Similar to conventional feder-
ated learning, the main server will conduct glob-
al aggregations. However, the end users are not 
directly connected to the main server; instead, the 
local models learned by end devices may traverse 
multiple layers of aggregations before reaching 
the main server. Local aggregations at each layer 
provide dimensionality reduction, reducing the 
size of the data being transmitted upstream. Syn-
chronizations at each layer also provide agile 
responses to any changes in local data distribu-
tions.

To see the motivation for dimensionality reduc-
tion, consider that any ML model is represent-
ed as a vector of its model parameters. For a 
DNN, this vector can have millions of entries [6], 
where each element requires a certain number of 
bits for storage and transfer. Depending on the 
quantization method, then, this parameter vector 
could require anywhere from a few megabytes to 
gigabytes. For the hierarchical network structure 
depicted in Fig. 2, consecutive transmissions of 
these vectors from millions of edge devices to the 
main server would lead to large delays, overload-
ed network infrastructure, and high communica-
tion costs.

Each group of devices in Fig. 2 forms a learn-
ing cluster that conducts local aggregations of 
its internal parameters. After each local aggrega-
tion, the size of the resulting vector to be trans-
mitted upstream is the same as any one of the 
input vectors, as illustrated in Fig. 3. For instance, 
each UAV in Fig. 2 can aggregate its associated 
devices’ parameters and send the resulting vector 
to the upper layer. 

hybrId LeArnIng: 
vertIcAL And horIZontAL communIcAtIons

The learning architecture in Fig. 3 follows a vertical 
communication structure, where model parame-
ters are passed only upstream and downstream 
between the network layers. Fog learning takes this 
one step further to allow for horizontal communi-
cations between devices in the same layer.

Peer-to-peer (P2P) networking has been an 
area of research, offering on-demand estab-
lishment of connectivity and eliminating the 
requirement of a central module to facilitate 
communication between peers. 5G-and-beyond 
wireless technologies are enabling D2D com-
munications between wireless nodes, which is 
motivating P2P intelligence in fog computing [7]. 
There is a well-developed body of literature on 
D2D communication protocols for mobile ad hoc 
networks (MANETs), vehicular ad hoc networks 
(VANETs), fl ying ad hoc networks (FANETs), and 
wireless sensor networks.

Considering again the structure in Fig. 2, fog 
learning would intelligently cluster the devices in 
the bottom-most layer such that each cluster has 
the potential to form a wireless ad hoc network 
for parameter sharing or data off loading. Similarly, 
the upper layers would be clustered such that the 
computing nodes in each layer are capable of 
communicating for parameter sharing, in some 
cases via low-latency wired connections (e.g., mul-
tiple local edge servers connected via fiber in a 
metropolitan area) and in other cases over the air 
(e.g., UAVs).

In Fig. 4, we represent the fog learning net-
work architecture as a logical tree graph, the 
leaves of which are the edge devices and the 
root of which is the main server. Fog learning is 
a hybrid learning methodology that leverages hor-
izontal communications among nodes in addi-
tion to vertical parameter transfers between the 
layers. In the following, we fi rst discuss a general 
approach for D2D communications at different 
network layers, and then discuss two data off load-
ing strategies that can be utilized in the bottom 
layers of the network.

D2D-Assisted Distributed Aggregations 
through Horizontal Communications: The nodes 

Figure 3. Dimensionality reduction from multi-layer aggregations. The length of the original learning param-
eter vectors at each end device is G. The size of data transmitted upstream from each middle node is 
also G, reduced by a factor of the number of node inputs.
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inside a D2D-enabled cluster are capable of 
computing the local aggregation of their local-
ly trained parameters in a distributed manner 
through message passing and consensus forma-
tion. This approach eliminates the need for the 
parent node to compute the aggregation, and can 
be implemented at all the network layers, which 
has energy efficiency advantages (discussed 
later). At the bottom-most layer, the datasets of 
the devices remain local, as in federated learning. 
In leveraging such horizontal communications, 
the conventional star topology used in federated 
learning is transformed to a collaborative/cooper-
ative distributed fog learning topology.

Our recent work [12] studied a realization 
of horizontal aggregation based on a distribut-
ed average consensus formation scheme.  We 
showed that even with limited amounts of D2D 
communications enabled, the learning accura-
cy approaches centralized gradient descent. We 
demonstrated that using this technique can result 
in around 50 percent device energy savings and 
80 percent reduction in the number of parame-
ters transferred over the network compared to 
conventional federated learning.

D2D-Assisted Dataset Offloading under 
Milder Privacy Concerns: In addition to sharing 
learning parameters, the proposed D2D com-
munication scheme can also be used for partial 
dataset offloading among trusted edge devices 
for applications with milder privacy concerns. In 
Fig. 4, this is only applicable at the bottom-most 
layer of the tree where the data is collected. This 
approach is useful in the presence of heteroge-
neous computation resources within a cluster (dis-
cussed later).

Our recent work [7] studied the improvement 
in network resource costs that intelligent D2D 
data offloading can provide to distributed learn-
ing, finding in particular that up to 50 percent 
decrease in the total device processing and trans-
mit resource utilization are possible compared 
to conventional federated learning. Our results 
reveal that these gains are consistent over a range 
of D2D topologies defined by communication 
restrictions (e.g., privacy) between nodes, and 
found up to 50 percent decrease in the total 

device processing and transmit resource utiliza-
tion are possible compared to conventional fed-
erated learning.

Inter-Layer Data Offloading and Caching: 
Mobile devices at the bottom-most network layer 
may move between local topologies rapidly, 
which presents an opportunity to improve local 
data distributions. Specifically, if devices offload 
portions of non-privacy-sensitive data to the next 
layer up, this data can be cached and broadcast-
ed among a larger number of edge devices. This 
will increase the similarity of local data to the 
global distribution and reduce model bias from 
local updates.

PerFormAnce AdvAntAges oF Fog LeArnIng

The local aggregation and D2D offloading fea-
tures of fog learning will be particularly important 
for contemporary data-intensive, latency-sensitive 
applications. These include training ML models 
for autonomous vehicle navigation, smart factory 
automation, and augmented/virtual reality (AR/
VR) navigation [7]. Specifically, the advantages 
provided are as follows.

Reducing Network Traffic: Fog learning 
employs local aggregations of ML model param-
eters at different layers of the topology, providing 
an upstream dimensionality reduction. This results 
in significantly reduced network traffic between 
different network layers.  Reducing data transfer 
requirements over long distances decreases laten-
cy and communication costs. This is particularly 
important when training high-complexity models 
like DNNs; in these cases, fog learning can lever-
age asynchronous layer-wise training and parame-
ter update techniques [13] for further reductions 
in upstream traffic.

Network Power Savings: Horizontal D2D 
communications allow node clusters to distrib-
utedly discover their aggregated models. Thus, 
the parent node of the cluster can choose one 
device to upload the aggregated value. Decreas-
ing the number of uplink transmissions by an 
order of magnitude will reduce energy consump-
tion significantly. For instance, in a cellular net-
work, continuous communication with the BS 
drains a smartphone’s battery rapidly. With D2D 

Figure 4. Network representation of fog learning. The root of the tree is the main server, the leaves are the end devices, and the 
nodes in between are different intermediate devices. The nodes belonging to the same layer and the same horizontal rectangle 
form clusters. The patterned rectangles correspond to those clusters that choose to engage in D2D and distributedly learn their 
model aggregation. The parent nodes of such clusters can then sample one (or a tiny fraction) of their children nodes to obtain the 
aggregated model. Each yellow block represents a learning block, where the top nodes have a certain clock for transmitting model 
parameters upstream for global aggregations.
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enabled, rather than uploading to the BS at each 
aggregation, the devices could engage in short-
range, low-power communications, and only one 
device will need to transmit the result. Instead of 
selecting one device, it would also be possible to 
employ a diversity technique where each device 
in a cluster engages in short, simultaneous uplink 
transmissions of only a fraction of the parameters.

Efficient Spectrum Usage: Devices in a cluster 
engaged in D2D communications can operate in 
out-of-band mode, which does not require utiliz-
ing the licensed spectrum of, say, a cellular BS or 
a vehicular RSU. Furthermore, when using in-band 
D2D, the devices can use opportunistic spectrum 
access methods to exploit the unused licensed 
spectrum.

Adaptation to Device Mobility: Devices may 
enter/exit a local cluster rapidly. When a device 
enters a D2D-enabled cluster, it can join the 
learning process quickly through acquisition of 
the current model parameters from a neighboring 
node. Also, when a device exits, it can transfer its 
model/data to a local peer, so its locally updat-
ed model and data is not negated. This capabil-
ity, along with the fact that devices in different 
clusters can perform learning in parallel, can be 
described as parallel successive learning: nodes 
can inherit partially trained models and continue 
refining the parameters with newly collected data. 

Leveraging Passive and Straggler Device 
Datasets: Certain devices may possess valuable 
data but have lower computational capabilities 
or not be engaged in the training process. With 
D2D-enabled data offloading and active inter-lay-
er data caching, these passive datasets can be 
transferred to resource-abundant active devices.

Faster Convergence in Fewer Global Aggre-
gations: By mitigating the effect of stragglers and 
enabling more distributed processing on hetero-
geneous datasets, the global model in Fig. 4 can 
be trained faster and with fewer costly global 
aggregations.

Key InnovAtIons In Fog LeArnIng

The key innovations of fog learning are as follows:
• Establishing multi-stage hierarchical machine 

learning through space
• Migrating from star to distributed learning 

topologies via collaboration/cooperation 
among D2D-enabled devices

• Employing agile network-aware management 
of heterogeneous nodes and channels

• Distributing task processing based on 
multi-objective network optimization of 
latency, cost, and privacy metrics

• Parallel successive learning for rapid refine-
ment of locally trained models

oPen reseArch dIrectIons
In the following, we outline several directions of 
future research for fog learning:

Optimizing Horizontal/Vertical Communica-
tions: Performing aggregations via D2D commu-
nications may be more resource-efficient, but can 
also incur more delay compared to the case of 
vertical aggregations. This delay is a function of 
data rates among the devices, channel qualities, 
rounds of D2D communications required, and 
other factors. Given the benefits of D2D com-
munications discussed earlier, quantifying the 

trade-offs and deciding which clusters of devices 
are suitable to perform the D2D communications 
deserves further investigation. Also, the potential 
for model inversion attacks at different network 
layers caused by horizontal parameter sharing 
needs to be considered through effective counter-
measures such as functional encryption [8].

Multi-Layer Control and Resource Allocation: 
Fog learning calls for a series of studies on design-
ing control algorithms for orchestrating the nodes 
at different layers of the network. Along this direc-
tion, straggler mitigation in a multi-layer structure 
must be considered, along with asynchronous 
management of model aggregations. Additionally, 
efficient resource allocation along the cloud-to-
things continuum must be considered, including 
congestion-aware distributed flow (load) balanc-
ing designs for distributed ML task handling. This 
may include a dynamic main server selection 
scheme based on network path resource avail-
ability.

Error Propagation Analysis: Due to commu-
nication imperfections and time-varying network 
topologies, horizontal parameter aggregations 
of devices in clusters may be noisy versions of 
the true aggregated values. Such noise will then 
be propagated and potentially amplified in trans-
mission to upper layers. Modeling these errors, 
their propagation, and their cumulative effect on 
training convergence speed and accuracy is an 
interesting future direction.

Intelligent Cluster Sampling: To reduce power 
consumption and network traffic, the main server 
in Fig. 4 can perform cluster sampling, in which 
only the end devices from certain clusters engage 
in model training in each round. This requires 
considering end devices’ data qualities and the 
characteristics of nodes in different network lay-
ers. Also, if nodes in the upper layers have mobile 
capabilities, this motivates network reconfigura-
tion between global aggregations. For instance, 
instead of deploying a dedicated set of UAVs for 
data collection from each cluster of devices, a lim-
ited set of UAVs can be utilized, and the optimal 
trajectory can be obtained to enable the desired 
cluster sampling.

Block-Based Learning: The devices located in 
different layers of the network can form differ-
ent learning blocks (Fig. 4) to further decrease 
the network traffic and the required number of 
global aggregations. In each block, the head 
(top-most) node(s) have a certain frequency 
of vertical communication. Between vertical 
updates, they can conduct multiple rounds of 
in-block learning local updates. Studying the 
trade-offs between the aggregation frequencies 
of different learning blocks, the computational 
capabilities of the nodes inside the blocks, model 
accuracy, and training convergence speed is an 
open direction.

Modeling of Heterogeneous Fog Networks: A 
comprehensive model of the interplay between 
fog network parameters (e.g., trust levels between 
users, D2D channel qualities, vertical commu-
nication quality variations, heterogeneous data 
quality, and heterogeneous compute capabilities) 
can lead to further optimization of fog learning. 
Codifying each of these parameters and designing 
corresponding collaborative/cooperative learning 
schemes is an open direction.

The local aggregation 

and data offloading 

features of fog learning 

will be particularly 

important for contem-

porary data-intensive, 

latency-sensitive appli-

cations. These include 

training ML models for 

autonomous vehicle 

navigation, smart factory 

automation, and aug-

mented/virtual reality 

(AR/VR) navigation.
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Smart Data Sharing: End users can off-
load different parts of their datasets to different 
peers. In acting as helper nodes, devices with 
higher compute powers can send out requests 
for specific samples in a dataset that they lack 
to maximize the resulting data processing bene-
fit. A similar procedure can be carried out using 
active inter-layer data caching. This will increase 
the quality of devices’ datasets and improve the 
resulting global models.

Incentivizing End Users: Proper incentive 
mechanisms are needed to persuade devices to 
participate in collaborative/cooperative model 
training. The incentives should consider the 
parameters of the local datasets (e.g., data qual-
ity) and the device’s network-related parameters 
(e.g., speed of data offloading and computational 
capabilities). 

Personalized Model Training: Training a single 
global model for an application can lead to poor 
performance at individual devices in scenarios of 
extreme data heterogeneity among geographi-
cally distributed nodes. To address this, person-
alized model training can be investigated for fog 
learning through frameworks such as multi-task 
learning [4].

Dynamic Networks and Mobility Models: 
D2D data offloading and parameter sharing is 
only practical when mobile devices are within a 
certain vicinity. Accurate mobility models of devic-
es could reveal pertinent information regarding 
the anticipated duration/frequency of contact, the 
data distributions of the contacting devices, and 
so forth. This information could be used to devel-
op mobility-aware collaborative model training.

Integration with Wireless Technologies: 
Massive multiple-input multiple-output and 
reconfigurable intelligent surfaces are two 
radio technologies that will be major drivers of 
5G-and-beyond wireless [14]. These physical/
link-layer technologies can be developed jointly 
with fog learning to conduct model training over 
large numbers of users with high data rates and 
low latency.

Deep Reinforcement Learning (DRL) for/
via Fog Learning: DRL is a useful ML technique 
when perfect knowledge about the learning 
environment is not attainable [15]. This method 
has the potential to address design problems for 
fog learning such as device beamforming, power 
control, interference management, coordination, 
and transmission scheduling, all of which can 
be adapted at different network layers. Decen-
tralized training of DRL in turn requires mes-
sage passing among the devices, which can be 
enabled at scale through fog learning via device 
collaboration, synchronization, and orchestration 
at different layers. 

concLusIon
We have introduced fog learning, a new paradigm 
for distributing ML model training through large-
scale networks of heterogeneous devices. We 
have demonstrated that fog learning is inherent-
ly a multi-layer collaborative/cooperative hierar-
chical learning framework that can significantly 
reduce network resource costs and model train-
ing times through local model aggregations at 

different network layers. We have introduced the 
hybrid property of fog learning, which combines 
horizontal D2D communications between nodes 
with vertical communications up the hierarchy. 
Further, we have discussed the distributed topolo-
gy and multi-objective optimization nature of fog 
learning that make it network-aware. Finally, we 
have identified several open research directions in 
this emerging area.
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We demonstrate that 

fog learning is inher-

ently a multi-layer col-

laborative/cooperative 

hierarchical learning 

framework that can 

significantly reduce net-

work resource costs and 

model training times 

through local model 

aggregations at different 

network layers.
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