estimation and sampling
why sample?

• Most analysis problems do not let you work with the whole population, e.g.,

• *How many engines have a defect?* Cannot take apart every engine to find out

• *What is the average height of people in Indiana?* Would be nearly impossible to measure every person in the state

• *What is the difference in commute times between people in Indianapolis and people in Chicago?* Again, cannot ask everyone in both cities

• We are often left trying to learn facts about a population by only studying a subset of that population, i.e., a sample
how to sample?

• Many strategies. Some common techniques:

 • **Simple Random Sampling** (SRS): Select S elements from a population P so that each element of P is equally likely to appear in S. **Easiest to analyze**, but can make it hard to represent rare samples (rare groups won’t show up).

 • **Stratified Sampling**: Subdivide population P into subgroups P_1, P_2, etc. where each subgroup represents a distinct attribute (e.g., breaking a population up by cities). Do SRS within the subgroups, and combine the result. **Ensures representation of each subgroup**, but can be hard to set up.

 • **Cluster Sampling**: Group population into random clusters (not specific subgroups like in stratified sampling). Select clusters at random, add all elements from selected clusters to sample. **Easier to conduct** than SRS, but adds more variability.

• We will focus mainly on SRS in this course
statistic vs parameter

• We differentiate between attributes of the population and the sample

• Numbers which summarize a population are called **parameters**
 • Population mean (μ), variance (σ^2), median, etc.

• Numbers which summarize a sample are called **statistics**
 • Sample mean (\bar{x}), variance (s^2), median, etc.
 • The statistics are not guaranteed to be close to the parameters (why?)

• **Estimation** is the problem of making educated guesses for parameters given sample data
 • Key question: How close is our estimate to the true parameter?
Let’s consider a population of 1000 people whose heights we have measured.
Let’s consider a population of 1000 people whose heights we have measured.

What if we sample \(n = 50 \) of them at random?

Don’t get exactly the same distribution.
Let’s consider a population of 1000 people whose heights we have measured.

What if we sample $n = 50$ of them at random?

Don’t get exactly the same distribution.

What if we sample again?
Let’s consider a population of 1000 people whose heights we have measured.

What if we sample \(n = 50 \) of them at random?

Don’t get exactly the same distribution.

What if we sample again?

And again?
Let’s consider a population of 1000 people whose heights we have measured.

What if we sample $n = 50$ of them at random?

Don’t get exactly the same distribution.

What if we sample again?

And again?
sampling

• Let’s consider a population of 1000 people whose heights we have measured
• What if we sample $n = 50$ of them at random?
 • Don’t get exactly the same distribution
• What if we sample again?
• And again?
roadmap for estimating mean

• We want to estimate the population mean μ

• Let’s estimate this by the sample mean \bar{x} of $n = 50$ samples

• Key question: How close is \bar{x} to μ?

 • First, let’s consider a hypothetical scenario: What if we could repeat this experiment as many times as we want and we knew μ?

 • Second, we will see that we can use theory to reason about this hypothetical (but unrealistic) scenario (leading to the central limit theorem)

 • Third, we will use this theory to help answer the above question (leading to hypothesis testing and confidence intervals)
What if we want to estimate the mean (μ) of a population?

\[\bar{x} = 69.42 \]
estimate the mean

• What if we want to estimate the mean (μ) of a population?

• Can sample, and repeat the experiment

\[\bar{x} = 69.42 \]
\[\bar{x} = 70.02 \]
\[\bar{x} = 69.14 \]
\[\bar{x} = 69.04 \]
\[\bar{x} = 69.48 \]
estimate the mean

- What if we want to estimate the mean (μ) of a population?
- Can sample, and repeat the experiment

\[\bar{x} = 69.42 \]
\[\bar{x} = 70.02 \]
\[\bar{x} = 69.14 \]
\[\bar{x} = 69.04 \]
\[\bar{x} = 69.48 \]

Population mean \(\mu = 69.436 \)
What if we want to estimate the mean (μ) of a population?

Can sample, and repeat the experiment

Estimate μ of population using the sample \bar{x}’s based on each experiment

How good is this estimate?

Use the mean squared error (MSE)
how good is our estimate?

• What if we want to estimate the mean (μ) of a population?

• Can sample, and repeat the experiment

\[
\text{Population } \mu = 69.436
\]

\[
\text{MSE} = \frac{1}{N} \sum_i (\bar{x}_i - \mu)^2
\]

MSE of estimates: .118
how good is our estimate?

• What about with smaller samples, e.g., \(n = 10 \)?

• Some \(\bar{x} \)’s: [68.6, 67.3, 68.7, 68.9, 69.0, 71.5, 69.8, 67.4, 70.0, 70.8]

• Still pretty good estimates, but not quite as good

\[
\text{MSE} = \frac{1}{N} \sum_i (\bar{x}_i - \mu)^2
\]

MSE of estimates: 1.70
other useful statistics

• Sample variance \(s^2 \) and standard deviation \(s \):

\[
s^2 = \frac{1}{N-1} \sum_{i} (x_i - \bar{x})^2, \quad s = \sqrt{s^2}
\]

• Quantifies the dispersion of the dataset around the mean

• Why divide by \(N - 1 \) instead of \(N \)?

 • Consider the case where \(N = 1 \) (i.e., one sample), what would be the estimate of \(s^2 \)?

 • Only \(N - 1 \) degrees of freedom when we are using \(\bar{x} \) as the estimate of \(\mu \)

 • For large \(N \) this does not matter much though

• Typically, \(s^2 \) is a better estimate of \(\sigma^2 \) than \(s \) is of \(\sigma \). There are several tricks to improve the estimates, but we’ll usually just use \(s \) directly.
the law of large numbers

- Empirically, we have observed that \(\bar{x} \) can be a good estimator for \(\mu \).

- What we are observing is the **law of large numbers**

 - If \(X_1, X_2, \ldots, X_n \) are independent and identically distributed (iid) random variables, then

 \[
 \bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \to \mu \text{ as } n \to \infty
 \]

 - In other words, the average of a large number of samples should be close to the population mean.

 - But any single sample \(X_i \) may still be a bad estimate.

 - What can I say about how good my estimate is?
We can also look at the distribution of a sample statistic, e.g., the mean \bar{x}

This is called a **sampling distribution**

- View the statistic itself as a random variable
- Take samples of this variable by running experiments
- Sampling distribution of the sample mean shown on the right
- It appears to be normally distributed!

Average of \bar{x}'s = 69.437
Standard deviation of \bar{x}'s = 1.17
central limit theorem

• The sampling distribution of the sample mean is approximately normal

• This is crystalized as the central limit theorem (CLT)

 • If X_1, X_2, \ldots, X_n are iid random variables, then $\bar{X}_n \rightarrow \mathcal{N}(\mu, \sigma^2/n)$

 • If I take multiple samples from the same distribution, the means tend toward a normal distribution centered on the population mean

• Note: X_1, X_2, \ldots, X_n could have any distribution (they do not need to be normally distributed!)
in the limit

• Let’s reason directly about the sampling distribution, as if we could repeat the experiment an infinite number of times.

• Mean of sampling distribution: μ (the mean of the population).

• Variance of sampling distribution: σ^2/n (population variance decaying with n).

• We can approximate the population variance σ^2 by the sample variance s^2 when the size of samples n is large.
how does this help us?

• Variance of sampling distribution: σ^2/n

• The bigger the n (the bigger the samples used to generate the means), the smaller the variance of the sampling distribution (the more tightly clustered the means are)

• In other words, the bigger your sample, the closer your sample mean is likely to be to the true mean

• Implication: if we have a sample mean (or means), we can use properties of the sampling distribution to let us judge …

 • how good the estimates are (confidence intervals)

 • how likely a sample is to be an outlier (hypothesis testing)

• Usually we want $n \geq 30$ to say that the CLT holds
Suppose that the number of YouTube videos Bob watches each day follows a Binomial distribution with 50 trials and a success probability 0.2.

What is the distribution of the mean number of videos watched among a random sample of 100 days in Bob’s life (assuming the days are independent)?

Note that if $X \sim \text{Bin}(k, p)$, then $\mu_X = kp$ and $\sigma_X^2 = kp(1 - p)$.
The number of videos Bob watches in a single day follows $X \sim \text{Bin}(50, 0.2)$. Thus, $\mu_X = 50 \cdot 0.2 = 10$ and $\sigma^2_X = 50 \cdot 0.2 \cdot 0.8 = 8$.

But we are not interested in X, we are interested in the sampling distribution \bar{X}_n over 100 samples. By the CLT, we know

$$\bar{X}_{100} \rightarrow \mathcal{N} \left(\mu, \frac{\sigma^2}{n} \right) = \mathcal{N} \left(10, \frac{8}{100} \right) = \mathcal{N} \left(10, 0.08 \right)$$

Even though X is Binomial, \bar{X} is Gaussian (note that we have a sufficiently large number of samples).