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higher order functions:
filters, map/reduce, list
comprehensions



higher order functions

® Since functions are treated as first- ® Return one or more functions

class objects in Python, they can ... def add two nums(x, y):
return x + vy

® Take one or more functions as
def add three nums(x, y, z):

arguments return X + y + z
def summation(nums): def get approprlate(num len):
return sum(nums) if num len ==
return add three nums
def main(f, args) else:
result = f(args) return add two nums
print(result)

e filter,map,and reduce are

examples of built-in higher order
functions

).

if name == “_ malin_
main(summation, [1,2,3])



filter

® Remove undesired results from a list ® The lambda function

® Needs two inputs: ® Anonymous, i.e., without a name

® (boolean) function to be carried out ® Formatted as

® [terable (list) to be filtered lambda arguments: expression
1i = [5, 7, 22, 97, 54, 62, 77, 23,
73, 61] ® Can have any number of
final 1list = list(filter(lambda x: arguments but on|y onhe
(x%2 1= 8) , 1i)) .
print(final list) EXpression
: g = lambda x, y: X + vy
B filter | > print(g(5,6))
condition if condition

IS true



map

® Applies a function to all itemsinan e Can also map e.g., a list of

input list (i.e., defines a2 mapping) functions
® Needs two inputs: def multiply(x):
return (x*x)
® Function to apply def add(x):

return (x+Xx)
® [terable: A sequence, collection, or

: : funcs = [multiply, add]
iterator object

for 1 in range(5):

items = [1, 2, 3, 4, 5] value = list(map(lambda x:
squared = list(map(lambda x: x**2, . x(1), funcs))
items)) print(value)



reduce

® Perform computation on a list and ® Can also define (non-anonymous)
return the (single value) result functions

def do sum(x1l, x2):

® Rolling computation applied to return x1 4+ x2

sequential pairs of values reduce(do_sum, 1i)
e Needs two inputs: ® Operator functions can also be
used

N :
Function to apply reduce(operator.add, 1i)

® Sequence to iterate over e Need to import the relevant

li = [5, 8, 10, 20, 50, 100] modules (reduce is not built in)
SUM = reduce((lambda x, y: x + vy), ,
1) from functools import reduce

import operator



liIst comprehensions

(often better than using map/filter directly)

® Simple way of creating a list based on an ® Can also have an if-else clause on the
iterable Python object output expression
® Elements in the new list are conditionally Eggﬁp‘iﬁ bt for
included and transformed as needed ]
[output expression for item in iterable ® Can use line breaks between brackets

J for readability

® An example: numbers = [1, 2, 3, 4, 5, 6, 18, 20]
squares = |
numbers = [1, 2, 3, 4, 5] "small" if number < 10 else "big"
squares = [n**2 for n in numbers if n > 2] for number in numbers
if number 7% 2 == 0
® Compared with a for loop if number % 3 == 0]
® More computationally efficient ® Can also be nested

, 1= [['3','4","5'],['6",'8","10","12"]]
® But less flexible! 12 = [[float(y) for y in x] for x in 1]



