ECE 20875
Python for Data Science

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

higher order functions:
filters, map/reduce, list
comprehensions

higher order functions

® Since functions are treated as first- ® Return one or more functions

class objects in Python, they can ... def add two nums(x, y):
return x + vy

® Take one or more functions as
def add three nums(x, y, z):

arguments return X + y + z
def summation(nums): def get approprlate(num len):
return sum(nums) if num len ==
return add three nums
def main(f, args) else:
result = f(args) return add two nums
print(result)

e filter,map,and reduce are

examples of built-in higher order
functions

).

if name == “_ malin_
main(summation, [1,2,3])

filter

® Remove undesired results from a list ® The lambda function

® Needs two inputs: ® Anonymous, i.e., without a name

® (boolean) function to be carried out ® Formatted as

® [terable (list) to be filtered lambda arguments: expression
1i = [5, 7, 22, 97, 54, 62, 77, 23,
73, 61] ® Can have any number of
final 1list = list(filter(lambda x: arguments but on|y onhe
(x%2 1= 8) , 1i)) .
print(final list) EXpression
: g = lambda x, y: X + vy
B filter | > print(g(5,6))
condition if condition

IS true

map

® Applies a function to all itemsinan e Can also map e.g., a list of

input list (i.e., defines a2 mapping) functions
® Needs two inputs: def multiply(x):
return (x*x)
® Function to apply def add(x):

return (x+Xx)
® [terable: A sequence, collection, or

: : funcs = [multiply, add]
iterator object

for 1 in range(5):

items = [1, 2, 3, 4, 5] value = list(map(lambda x:
squared = list(map(lambda x: x**2, . x(1), funcs))
items)) print(value)

reduce

® Perform computation on a list and ® Can also define (non-anonymous)
return the (single value) result functions

def do sum(x1l, x2):

® Rolling computation applied to return x1 4+ x2

sequential pairs of values reduce(do_sum, 1i)
e Needs two inputs: ® Operator functions can also be
used

N :
Function to apply reduce(operator.add, 1i)

® Sequence to iterate over e Need to import the relevant

li = [5, 8, 10, 20, 50, 100] modules (reduce is not built in)
SUM = reduce((lambda x, y: x + vy), ,
1) from functools import reduce

import operator

liIst comprehensions

(often better than using map/filter directly)

® Simple way of creating a list based on an ® Can also have an if-else clause on the
iterable Python object output expression
® Elements in the new list are conditionally Eggﬁp‘iﬁ bt for
included and transformed as needed]
[output expression for item in iterable ® Can use line breaks between brackets

J for readability

® An example: numbers = [1, 2, 3, 4, 5, 6, 18, 20]
squares = |
numbers = [1, 2, 3, 4, 5] "small" if number < 10 else "big"
squares = [n**2 for n in numbers if n > 2] for number in numbers
if number 7% 2 == 0
® Compared with a for loop if number % 3 == 0]
® More computationally efficient ® Can also be nested

, 1= [['3','4","5'],['6",'8","10","12"]]
® But less flexible! 12 = [[float(y) for y in x] for x in 1]

