
ECE 20875
Python for Data Science

Histograms

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni, 
Stanley Chan, Chris Brinton, David Inouye, and Qiang Qiu)



• You’re managing a coffee shop

• Assuming you want to maximize profit, how 
much coffee should you buy for each day?

• Too much → Surplus, waste money :(

• Too little → Unsatisfied demand, under-
caffeinated customers :(

• What should you do?

a problem



• Count how many people get coffee in a day

• Day 1: 37 people

• Likely different each day of the week, and 
the type of coffee (cold brew, late, etc.) 
also has an impact

• Assume such factors do not matter 
(problem is still interesting!)

• Should we just get enough coffee for 37 
people?

collect data



• Day 2: 43

• Day 3: 48

• Day 4: 41

• Day 5: 46

• Day 6: 19 (!)

• Day 7: 38

• …

(keep) collect(ing) data



[37, 43, 48, 41, 46, 19, 28, 35, 34, 38, 
31, 32, 32, 23, 23, 33, 35, 39, 34, 28, 
39, 28, 29, 38, 28, 30, 25, 35, 39, 35, 
31, 28, 25, 26, 15, 31, 28, 32, 40, 21, 
34, 38, 30, 47, 34, 31, 51, 30, 41, 36, 
33, 51, 22, 25, 29, 50, 32, 39, 25, 37, 
54, 33, 36, 25, 30, 22, 41, 35, 31, 40, 
30, 33, 27, 36, 27, 34, 24, 41, 37, 29, 
48, 40, 31, 32, 33, 32, 40, 31, 32, 40, 
31, 33, 32, 38, 37, 41, 37, 39, 38, 42]

100 days later …



• Staring at a list of numbers is not 
very illuminating

• Visualizing the data in a useful way 
can help reveal patterns

• Data visualization is an 
important subset of data science

• Since the data consists of a single, 
numeric variable, we can try a 
histogram

visualize the data



• A histogram visualizes observations of 
a random variable 𝑑
• Each bar in a histogram is a bin

𝑥!, 𝑥", . . .
• Each observation is placed into one 

bin
𝑥!: 15 ≤ 𝑑 < 20, 𝑥": 20 ≤ 𝑑
< 25, . . .

• The count (size/height) of each bin is 
the number of observations in that bin

𝑥!: 2, 𝑥": 6, . . .

building a histogram

import matplotlib.pyplot as plt
_ = plt.hist(data, bins=8, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel(‘frequency')
plt.show()



• The empirical (measured) frequency of each 
bin is the fraction of data in that bin

• Often, count is also referred to as frequency

• The y-axis numbers telling us what exactly is 
plotted

• (More details on later slides)

building a histogram

_ = plt.hist(data, bins=8, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')

!𝑝! = 𝑥! / ∑
"
𝑥" = 0.02, !𝑝# = 𝑥# / ∑

"
𝑥" = 0.06, . . .

∑
"
𝑝̂" = 1Note that



• Remember: This histogram comes 
from observed data

• If we repeat the experiment, we 
might not get the same histogram!

• In fact, there will almost surely be 
some difference at this sample size

• This is because what we have is a 
sample of the true distribution

repeating the experiment

_ = plt.hist(data, bins=8, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')



• Suppose we collect 1000 observations instead of 
100

• The result on the right looks basically the same!

• Using the same number of bins

• Each bin has more observations in it

• But the relative frequencies are not changing 
much

• But now that we have a larger sample, we can 
add more bins to see a finer granularity of the 
distribution

collecting a larger sample

_ = plt.hist(data, bins=8, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')



• This looks better!

• Gives us a good sense of what the 
data looks like, and what the 
underlying distribution is

• What would happen if we used 
more than 40 bins here?

adding more bins

_ = plt.hist(data, bins=40, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')



• This looks even better!

• As we add more data points, 
our histogram looks more and 
more like the “true” shape of 
the underlying distribution

• We’ll get in to what this 
means when we talk about 
distributions and sampling

adding even more data

_ = plt.hist(data, bins=40, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')



histogram bin normalization

_ = plt.hist(data, bins=8, 
range=(15,55), density=‘True’)

• Count - y-axis is the count in each bin, denoted 𝑥!

• ∑
!"#

$
𝑥! = 𝑚, sum of all bins is total number of samples 𝑚

• Probability - y-axis is probability for each bin, denoted 
𝑝̂! =

%!
∑" %"

• ∑
!
𝑝̂! = 1, sum of all bin probabilities is 1

• Density - y-axis is normalized by both probability and bin 

width, (𝑑! =
'(!
)

• So ∑
!
𝑤 + (𝑑! = 1, i.e., the area under the curve is 1

• “Frequency” can be used for both “count” and “probability” 
above



• The histogram has a few parameters

• Number of bins 𝑛, width of bins 𝑤, and even 
number of samples 𝑚 can be viewed as one

• Bins don’t even have to be homogeneous

• Several formulas have been proposed for choosing 𝑛
and 𝑤 based on the sample

• Square root: 𝑛 = ⌈ 𝑚⌉
• Sturges’ formula: 𝑛 = ⌈log#𝑚⌉ + 1

• Rice rule: 𝑛 = ⌈2𝑚 ⁄! %⌉
• Scott’s normal reference rule: 𝑤 = 3.5 !𝜎/𝑚 ⁄" #

• How do we reason about the “optimal” choice?

choice of bins



• Choosing large bin size 𝑤
• Broad range of points (some rare, some 

common) put into the same bin and given the 
same estimate

• Choosing small bin size 𝑤
• Each bin is based on fewer samples, so harder 

to estimate how likely the bin is

• In the limit: Buckets of size 0 (is it practical?)

• So how do we choose the bin size in general?

bin width intuition



evaluation of histograms
• We can choose many different bin widths 𝑤 (or equivalently the 

number of bins 𝑛)

• How do we evaluate which bin width 𝑤 is better?

• Visual appeal - Which is most visually appealing to humans?

• Usefulness - Which helps the owner know how much coffee 
to make? 

• Mathematical metrics - Which satisfies some mathematical 
notion of goodness? (Ideally this is tied to usefulness)

• We will focus on mathematical metrics



estimated vs. “true” model
• First, we assume there is some “true” underlying model

(often denoted by 𝑓(𝑥) ) for the phenomena of interest

• Importantly, this “true” model is unknown (or hidden)

• For example, we don’t know before collecting data the 
distribution of coffee purchases

• Even after collecting data, we can only estimate the 
distribution

• Histograms are an estimate (or approximation, often 
denoted by %𝑓(𝑥) ) of the true distribution



• We can pick the bin size 𝑤 that minimizes the error 
of estimating a point

• The Integrated Square Error (ISE) of a 
histogram can be written as a function of the bin 
width (i.e., the smoothing parameter)

𝐿(𝑤) = ∫ '𝑓,(𝑥) − 𝑓(𝑥)
-
𝑑𝑥

• Here, %𝑓!(𝑥) is the density estimate of the histogram 
with 𝑚 samples

• However, 𝑓(𝑥) is the “true” but unknown model, so 
how do we compute 𝐿(𝑤)?

minimizing the estimation error



• The Integrated Square Error (ISE):

𝐿(𝑤) = ∫ "𝑓!(𝑥) − 𝑓(𝑥)
"
𝑑𝑥

• We can approximate with data samples by 𝐿(𝑤)
≈ 𝐽(𝑤) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where

𝐽(𝑤) =
2

(𝑚 − 1)𝑤
−

𝑚 + 1
(𝑚 − 1)𝑤

($𝑝#" + $𝑝"" +⋯+ $𝑝$")

• 𝑤 is bin width, 𝑚 is the number of samples and $𝑝" , 𝑘
= 1, . . . , 𝑛 are the bin probabilities

• We can choose the “optimal” bin width by minimizing 
𝐽(𝑤), which approximates 𝐿(𝑤)!

estimating the error with samples



• The brute-force way is to try as many values of 
𝑤 as possible and choose the best

• Better to work with 𝑛 here in this case, since 
there is a finite number of possibilities

• For each 𝑛 = 1, . . . , 𝑚:

• calculate 𝑤
• use this to calculate 𝐽

Plot the results, choose the best one

• To narrow down the number of values we need 
to try, grid search procedures are also 
possible

minimizing 𝐽(𝑤)
Testing all numbers of bins

𝑛

𝐽(
𝑛)


