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• You’re managing a coffee shop

• Assuming you want to maximize profit, how 
much coffee should you buy for each day?

• Too much → Surplus, waste money :(

• Too little → Unsatisfied demand, under-
caffeinated customers :(

• What should you do?

a problem



• Count how many people get coffee in a day

• Day 1: 37 people

• Likely different each day of the week, and 
the type of coffee (cold brew, late, etc.) 
also has an impact

• Assume such factors do not matter 
(problem is still interesting!)

• Should we just get enough coffee for 37 
people?

collect data



• Day 2: 43

• Day 3: 48

• Day 4: 41

• Day 5: 46

• Day 6: 19 (!)

• Day 7: 38

• …

(keep) collect(ing) data



[37, 43, 48, 41, 46, 19, 28, 35, 34, 38, 
31, 32, 32, 23, 23, 33, 35, 39, 34, 28, 
39, 28, 29, 38, 28, 30, 25, 35, 39, 35, 
31, 28, 25, 26, 15, 31, 28, 32, 40, 21, 
34, 38, 30, 47, 34, 31, 51, 30, 41, 36, 
33, 51, 22, 25, 29, 50, 32, 39, 25, 37, 
54, 33, 36, 25, 30, 22, 41, 35, 31, 40, 
30, 33, 27, 36, 27, 34, 24, 41, 37, 29, 
48, 40, 31, 32, 33, 32, 40, 31, 32, 40, 
31, 33, 32, 38, 37, 41, 37, 39, 38, 42]

100 days later …



• Staring at a list of numbers is not 
very illuminating

• Visualizing the data in a useful way 
can help reveal patterns

• Data visualization is an 
important subset of data science

• Since the data consists of a single, 
numeric variable, we can try a 
histogram

visualize the data



• A histogram visualizes observations of 
a random variable 𝑑
• Each bar in a histogram is a bin

𝑥!, 𝑥", . . .
• Each observation is placed into one 

bin
𝑥!: 15 ≤ 𝑑 < 20, 𝑥": 20 ≤ 𝑑
< 25, . . .

• The count (size/height) of each bin is 
the number of observations in that bin

𝑥!: 2, 𝑥": 6, . . .

building a histogram

import matplotlib.pyplot as plt
_ = plt.hist(data, bins=8, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel(‘frequency')
plt.show()



• The empirical (measured) frequency of each 
bin is the fraction of data in that bin

• Often, count is also referred to as frequency

• The y-axis numbers telling us what exactly is 
plotted

• (More details on later slides)

building a histogram

_ = plt.hist(data, bins=8, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')

!𝑝! = 𝑥! / ∑
"
𝑥" = 0.02, !𝑝# = 𝑥# / ∑

"
𝑥" = 0.06, . . .

∑
"
𝑝̂" = 1Note that



• Remember: This histogram comes 
from observed data

• If we repeat the experiment, we 
might not get the same histogram!

• In fact, there will almost surely be 
some difference at this sample size

• This is because what we have is a 
sample of the true distribution

repeating the experiment

_ = plt.hist(data, bins=8, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')



• Suppose we collect 1000 observations instead of 
100

• The result on the right looks basically the same!

• Using the same number of bins

• Each bin has more observations in it

• But the relative frequencies are not changing 
much

• But now that we have a larger sample, we can 
add more bins to see a finer granularity of the 
distribution

collecting a larger sample

_ = plt.hist(data, bins=8, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')



• This looks better!

• Gives us a good sense of what the 
data looks like, and what the 
underlying distribution is

• What would happen if we used 
more than 40 bins here?

adding more bins

_ = plt.hist(data, bins=40, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')



• This looks even better!

• As we add more data points, 
our histogram looks more and 
more like the “true” shape of 
the underlying distribution

• We’ll get in to what this 
means when we talk about 
distributions and sampling

adding even more data

_ = plt.hist(data, bins=40, range=(15,55))
plt.xlabel('# of coffee drinkers')
plt.ylabel('frequency')



histogram bin normalization

_ = plt.hist(data, bins=8, 
range=(15,55), density=‘True’)

• Count - y-axis is the count in each bin, denoted 𝑥!

• ∑
!"#

$
𝑥! = 𝑚, sum of all bins is total number of samples 𝑚

• Probability - y-axis is probability for each bin, denoted 
𝑝̂! =

%!
∑" %"

• ∑
!
𝑝̂! = 1, sum of all bin probabilities is 1

• Density - y-axis is normalized by both probability and bin 

width, (𝑑! =
'(!
)

• So ∑
!
𝑤 + (𝑑! = 1, i.e., the area under the curve is 1

• “Frequency” can be used for both “count” and “probability” 
above



• The histogram has a few parameters

• Number of bins 𝑛, width of bins 𝑤, and even 
number of samples 𝑚 can be viewed as one

• Bins don’t even have to be homogeneous

• Several formulas have been proposed for choosing 𝑛
and 𝑤 based on the sample

• Square root: 𝑛 = ⌈ 𝑚⌉
• Sturges’ formula: 𝑛 = ⌈log#𝑚⌉ + 1

• Rice rule: 𝑛 = ⌈2𝑚 ⁄! %⌉
• Scott’s normal reference rule: 𝑤 = 3.5 !𝜎/𝑚 ⁄" #

• How do we reason about the “optimal” choice?

choice of bins



• Choosing large bin size 𝑤
• Broad range of points (some rare, some 

common) put into the same bin and given the 
same estimate

• Choosing small bin size 𝑤
• Each bin is based on fewer samples, so harder 

to estimate how likely the bin is

• In the limit: Buckets of size 0 (is it practical?)

• So how do we choose the bin size in general?

bin width intuition



evaluation of histograms
• We can choose many different bin widths 𝑤 (or equivalently the 

number of bins 𝑛)

• How do we evaluate which bin width 𝑤 is better?

• Visual appeal - Which is most visually appealing to humans?

• Usefulness - Which helps the owner know how much coffee 
to make? 

• Mathematical metrics - Which satisfies some mathematical 
notion of goodness? (Ideally this is tied to usefulness)

• We will focus on mathematical metrics



estimated vs. “true” model
• First, we assume there is some “true” underlying model

(often denoted by 𝑓(𝑥) ) for the phenomena of interest

• Importantly, this “true” model is unknown (or hidden)

• For example, we don’t know before collecting data the 
distribution of coffee purchases

• Even after collecting data, we can only estimate the 
distribution

• Histograms are an estimate (or approximation, often 
denoted by %𝑓(𝑥) ) of the true distribution



• We can pick the bin size 𝑤 that minimizes the error 
of estimating a point

• The Integrated Square Error (ISE) of a 
histogram can be written as a function of the bin 
width (i.e., the smoothing parameter)

𝐿(𝑤) = ∫ '𝑓,(𝑥) − 𝑓(𝑥)
-
𝑑𝑥

• Here, %𝑓!(𝑥) is the density estimate of the histogram 
with 𝑚 samples

• However, 𝑓(𝑥) is the “true” but unknown model, so 
how do we compute 𝐿(𝑤)?

minimizing the estimation error



• The Integrated Square Error (ISE):

𝐿(𝑤) = ∫ "𝑓!(𝑥) − 𝑓(𝑥)
"
𝑑𝑥

• We can approximate with data samples by 𝐿(𝑤)
≈ 𝐽(𝑤) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where

𝐽(𝑤) =
2

(𝑚 − 1)𝑤
−

𝑚 + 1
(𝑚 − 1)𝑤

($𝑝#" + $𝑝"" +⋯+ $𝑝$")

• 𝑤 is bin width, 𝑚 is the number of samples and $𝑝" , 𝑘
= 1, . . . , 𝑛 are the bin probabilities

• We can choose the “optimal” bin width by minimizing 
𝐽(𝑤), which approximates 𝐿(𝑤)!

estimating the error with samples



• The brute-force way is to try as many values of 
𝑤 as possible and choose the best

• Better to work with 𝑛 here in this case, since 
there is a finite number of possibilities

• For each 𝑛 = 1, . . . , 𝑚:

• calculate 𝑤
• use this to calculate 𝐽

Plot the results, choose the best one

• To narrow down the number of values we need 
to try, grid search procedures are also 
possible

minimizing 𝐽(𝑤)
Testing all numbers of bins

𝑛

𝐽(
𝑛)


