ECE 20875 Python for Data Science

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni, Stanley Chan, Chris Brinton, David Inouye, and Qiang Qiu)

convolutional neural network (CNN)

image classification using NN

airplane	and the	1	X	*	+	2			Red.
automobile				-	No.	-			*
bird		2			4	V	1	1	ø
cat		-	50		Se.	2	đ.	the second	1
deer	14	X	m		Y	Ŷ	1	7	
dog	W. A.	-		1			T'S	A	1
frog				2 .		and the second	57		50
horse	- the and	A	7	P	K TI	-	24		T.
ship	-	ditie	-	- MA		2	18	12	
truck		1					1	-	See.

- Collect a large amount of images
- Annotate each image with a class label
- Choose a neural network structure
- Use our training samples to adjust layers and layers of parameters (backpropagation) to minimize a chosen loss
- **Goal**: After training, when the NN sees a new image, its output should assign the highest probability to the respective class.

Overall procedure:

image vectorization

Image

Challenge: The density of connections between layers increases intractably as the size of the image increases!!

Fully-connected

local connections and weight sharing

Fully-connected

Now, all four hidden neurons 1. Share the same set of 6 weights 2. Use local connections (receptive fields)

An effective way to reduce model parameters:

- (Local connection) Each neuron only processes inputs from a local region
- (Weight sharing) Neurons within the same layer can share weights

a convolution view

?

Another view to local connection and weight sharing:

- Convolve (slide) a block of shared weights over all spatial locations
- At each spatial location, output one value (computing dot products)

convolutional filters

- We call this block of shared weights a convolutional filter
- **Convolution**: Convolve a filter with the image, i.e., slide over the image spatially, computing at each position a dot product between the filter and a small chunk of the image (plus bias), $W^T X + b$
 - The dot product then goes through an activation function, e.g., ReLU, to produce the output

convolution

Feature map

- At each spatial location, output one value
- Convolve (slide) over all spatial locations to generate an image like map, referred to as a **feature map**
- A convolutional layer: Things between an input and a feature map

During convolution, the weights "slide" along the input to generate each output.

Output

Input

Input

convolution

Output

Output

Input

Each slice is the output from one filter

convolution

- Multiple sets of shared weights (filters) are allowed
- Each set of shared weights (filter) give one slice in the output (feature maps)
- In practice, CNN use many filters (~64 to 1024)

visualizing convolution

How convolutional filters may look like

pooling

Feature map

Convolution is often followed by **pooling**:

- Create a smaller and more manageable representation while retaining the most important information
- "max" is the most common operation
- Operate over each feature map independently

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

y

max pool with 2x2 filters and stride 2

max pooling

Max Pooling is a pooling operation that calculates the maximum value for patches of a feature map.

Convolutional neural network (CNN) ONV CONV POOLCONV CONV POOLCONV CONV POOL FC RELU RELU RELU RELU RELU RELU (Fully-connected)

Stack layers of convolution, activation (ReLU), pooling => CNN

how to train a CNN?

Example: AlexNet [Krizhevsky 2012]

each sample

"max": max pooling "norm": local response normalization "full": fully connected

Figure: [Karnowski 2015] (with corrections)

- Split the data
- Choose the network architecture
- Initialize the network weights
- Find a learning rate and regularization strength
- Minimize the loss, e.g., softmax

- **Train**: gradient descent and fine-tuning of parameters
- Validation: determining hyper-parameters (learning rate, regularization) strength, etc.) and picking an architecture
- **Test**: estimate real-world performance

softmax Loss (multinomial logistic regression)

A generalization of logistic regression for multi-class classification

Probabilities

Goal: Minimize loss \Rightarrow Maximize the probability of true class

$$L(\boldsymbol{x}^{i}, y^{i}; \boldsymbol{\theta}) = -\log(P(y = yi | \boldsymbol{x}^{i})) = -\log(\frac{e^{Z_{yi}}}{\sum_{k=1}^{K} e^{Z_{k}}})$$

• **Training**: Minimizing the loss w.r.t parameters over the whole training set using backpropagation

 $\boldsymbol{\theta}^* = \arg \min$

training

• (Per-sample) Negative log-likelihood loss, e.g., for the i-th sample, $(\mathbf{x}^i, \mathbf{y}^i)$

N

$$\operatorname{in}_{\boldsymbol{\theta}} \sum_{i=1}^{N} L(\boldsymbol{x}^{i}, y^{i}; \boldsymbol{\theta})$$

Regularization reduces overfitting (as we have seen before):

regularization

 $L = L_{data} + L_{reg}$

 $\lambda = 0.1$ $\lambda = 0.01$

Higher regularization

examples of regularization terms L2 regularization: encourages small weights $L_{reg} = \lambda \frac{1}{2} \|W\|_2^2$

L1 regularization: encourages sparse weights $L_{reg} = \lambda \|W\|_1 = \lambda \sum_{i,i} |W_{ii}|$

- **Elastic net:** combines L1 and L2 regularization terms $L_{reg} = \lambda_1 \|W\|_1 + \lambda_2 \|W\|_2^2$
- Max norm: clamps (clips) weights to some maximum norm $||W||_2^2 \leq c$