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image classification using NN
??

Overall procedure:
• Collect a large amount of images
• Annotate each image with a class label 
• Choose a neural network structure
• Use our training samples to adjust layers and layers 

of parameters (backpropagation) to minimize a 
chosen loss

Goal: After training, when the NN sees a new image, 
its output should assign the highest probability to the 
respective class. 
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image vectorization
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Challenge: The density of connections 
between layers increases intractably as the 
size of the image increases!!

Fully-connectedImage



local connections and weight 
sharing

Now, all four hidden neurons 
1. Share the same set of 6 weights
2. Use local connections (receptive 

fields)

Fully-connected

An effective way to reduce model 
parameters:
• (Local connection) Each neuron 

only processes inputs from a local 
region

• (Weight sharing) Neurons within 
the same layer can share weights



a convolution view

Another view to local connection and 
weight sharing:
• Convolve (slide) a block of shared 

weights over all spatial locations
• At each spatial location, output one 

value (computing dot products)
Shared 
weights



convolutional filters 
• We call this block of shared weights a 

convolutional filter

• Convolution: Convolve a filter with the 
image, i.e., slide over the image 
spatially, computing at each position a 
dot product between the filter and a 
small chunk of the image (plus bias), 
𝑾𝑇𝑿 + 𝑏

• The dot product then goes through an 
activation function, e.g., ReLU, to 
produce the output

Convolutional 
Filter
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Filters always extend the full 
depth of the input volume.

W: 3x3x3

8x8x3

X: 3x3x3

a small chunk 
of the image



convolution
Convolutional 

filter
Input Feature map

• At each spatial location, output one 
value

• Convolve (slide) over all spatial 
locations to generate an image like 
map, referred to as a feature map

• A convolutional layer: Things 
between an input and a feature map



convolution
During convolution, the weights “slide” along the input to generate each 
output. 



convolution
• Multiple sets of shared weights 

(filters) are allowed

• Each set of shared weights (filter) 
give one slice in the output 
(feature maps)

• In practice, CNN use many filters 
(~64 to 1024)

Convolutional 
filters

Input Feature 
maps

Each slice is the 
output from one filter



visualizing convolution
How convolutional filters may look like



pooling

Convolution is often followed by pooling:
• Create a smaller and more manageable 

representation while retaining the most 
important information

• “max” is the most common operation
• Operate over each feature map 

independently

Feature map



max pooling

Max Pooling is a pooling operation 
that calculates the maximum value 
for patches of a feature map.



convolutional neural network 
(CNN)

Stack layers of convolution, activation (ReLU), pooling => CNN



how to train a CNN?

• Split the data
• Choose the network architecture
• Initialize the network weights
• Find a learning rate and 
regularization strength
• Minimize the loss, e.g., softmax



splitting the dataset

• Train: gradient descent and fine-tuning of parameters

• Validation: determining hyper-parameters (learning rate, regularization 
strength, etc.) and picking an architecture

• Test: estimate real-world performance



softmax Loss 
(multinomial logistic regression)

A generalization of logistic regression for multi-class classification
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training

𝐿(𝒙𝑖, 𝑦𝑖; 𝜭) = − log 𝑃 𝑦 = 𝑦𝑖 𝒙𝑖 = − log(
𝑒"!"
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)

• (Per-sample) Negative log-likelihood loss, e.g., for the i-th sample, (xi, yi)

Goal: Minimize loss ⇒ Maximize the probability of true class

• Training: Minimizing the loss w.r.t parameters over the whole 
training set using backpropagation 
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regularization

𝜆 = 0.001 𝜆 = 0.1𝜆 = 0.01

Regularization reduces overfitting (as we have seen before):

𝐿 = 𝐿+,-, + 𝐿./0

Higher regularization



examples of regularization 
terms

• L2 regularization: encourages small weights

• L1 regularization: encourages sparse weights

• Elastic net: combines L1 and L2 regularization terms

• Max norm: clamps (clips) weights to some maximum norm
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