ECE 20875
Python for Data Science

Chris Brinton, Qiang Qiu, and Mahsa Ghasemi

(Adapted from material developed by Profs. Milind Kulkarni,
Stanley Chan, Chris Brinton, David Inouye, Qiang Qiu)

inheritance

reusing functionality

class Person :
* We often want to reuse functionality from def __init__(self, name)

- self.name = name
an existing class

def getName(self)

return self.name
e \WWhen a new class that has some extra

functionality compared to an old class p = Person(“Bob”) |
print(p.getName()) #prints “Bob”

e \When a new class Changes/overrides #creating a new class that has a lot in
: : common with “Person”
some functionality of an old class class AgePerson :

def __init__ (self, name, age)

: self.name = name
* One option: Create a new class, and self.age = age

define all the necessary functions
def getName(self)

return self.name
 This is done in the example on the
def getAge(self)

right return self.age

Inheriting from parent class

* This is pretty inefficient if there is a lot of overlap
 |[nstead, we can use inheritance

e Create a new child class that inherits the attributes
of the parent class

e Can then add new attributes to a class to define
new functions and/or add new data

 Updated example using inheritance on the right:

e 1nit__ from AgePerson overrides 1nit
from Person

« When we create a new AgePerson, we use the new
versionof init , but when we call getName(),
we use the old version of getName()

class Person :
def __init_ (self, name)
self.name = name

def getName(self)
return self.name

p = Person(“Bob”)
print(p.getName())

#we can 1nstead let the AgePerson class
inherit from the parent class Person
class AgePerson(Person)
#overrides ___1nit__ from parent
def __init_ (self, name, age)
self.name = name
self.age = age

def getAge(self)
return self.age

reusing when redefining

) _ . : class Person :
Can reuse functionality even more by using the def init (self, name)

Super() fUﬂCtIOﬂ Wlthln d Ch'ld CIaSS self.name = name

def getName(self)

* Tells the class to inherit this method/property return self.name

from the parent, and allows further redefining
p = Person(“Bob”)

» Updated example on the right: print(p.getName())
L o class AgePerson(Person) :
e super().__init__ () refersto_init__ () def __init_ (self, name, age) :
of the parent class Person #Tell AgePerson to inherit __init__

from parent class
_ o super().__init__ (name)
 This tells AgePersontoreuse __1nit__ from

Person in the redefinition, and then we can add #Then we can add additional
additional functionality on top of it functionality to the new init
self.age = age
* Can similarly reuse functionality when redefining def getAge(self)
other functions return self.age

overriding default methods

e All classes inherit from the built-in basic class CIZZ]SC Peirf]ci’fc‘ : (celf. name) :
called object by default self.name = name |
* Provides some default functionality like deﬁe%ﬁmagg{?eg% e:
__str__and _repr__ methods '
p = Person(“Bob”)
« _ repr__is the “official” string representation of print(p.getName())

an object, more general than just printing,
useful for debugging

class AgePerson(Person) :
def __init_ (self, name, age) :
super().__init__ (name)

e _str__ isthe “informal” string self.age = age
representation of an object, used for creating def getAge(self) :
readable end user output return self.age

def _ repr_ (self) :

e Overriding these gives us the ability to change return self.name + “, “ + str(self.age)

how objects are represented (__repr) or printed

p = AgePerson(“Bob"”, 33)
(_str__or__repr_) repr(p) #prints ‘Bob, 33’

uses of inheritance we’ve seen

 \We’ve seen inheritance used in many
Python packages we have used in this class

linear model

* Distribution classes (hormal, exponential,
etc.) in sklearn all inherit from generic /
classes that provide some default

functionality Linear
Regression

* These classes override key methods (like
pdf and cdf) to provide distribution-

specific implementations

e Several regression models in sklearn
inherit functionality from 1linear model

what about polymorphism or interfaces?

class Animal :
def __init__ (self, name) :
self.name = name
* You may have heard of polymorphism before
def talk(self)

_ , _ . . . raise NotImplementedError(“Subclass
e Call a function on an object, but invoke different functionality must implement talk method”)

depending on exactly what class an object is class Cat(Animal) :

def talk(self):
e Can write very generic code since you do not have to know return ‘Meow!’

exactly what type of object you are working with class Duck: # Notice doesn’t inherit

def __init__ (self, name) :
o Used extensively in languages like Java and C++ through the self.name = name # But has the right var.
. . Y . Juag J def talk(self): # And implements this method

animals = [Cat(‘Missy’), Cat(‘Mr. Mistoffelees'),

* Python gets you this “for free”: Duck(“Sammy’)]

 Programs are not written with types for animal in animals:
J yp print(animal.name + ‘: ‘ + animal.talk())

* |Invoke any method on any object if the object’s class has the

method defined (called duck typing) IF 1T LOOKS LIKE A DUCK,

AND QUACKS LIKE A DUCK,
that implement the same method(s) 'S A DUCK,

* No need for any actual relationship between different classes

