Brief Review of Linear Algebra

Content and structure mainly from: http://www.deeplearningbook.org/contents/linear_algebra.html)

```
In [2]: import numpy as np
import matplotlib.pyplot as plt
```

Scalars

- · Single number
- · Denoted as lowercase letter
- Examples
 - $x \in \mathbb{R}$ Real number
 - $z \in \mathbb{Z}$ Integer
 - $y \in \{0, 1, ..., C\}$ Finite set
 - $u \in [0, 1]$ Bounded set

Vectors

- In notation, we usually consider vectors to be "column vectors"
- Denoted as lowercase letter (often bolded)
- Dimension is often denoted by d, D, or p.
- Access elements via subscript, e.g., x_i is the i-th element
- Examples
 - $\mathbf{x} \in \mathbb{R}^d$ Real vector • $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$

```
In [4]: x = np.array([1.1343, 6.2345, 35])
    print(x)
    z = 5 * np.ones(3, dtype=int)
    print(z)

[ 1.1343  6.2345 35. ]
    [5 5 5]
```

Adding vectors in numpy

Note: The operator + does different things on numpy arrays vs Python lists

- · For lists, Python concatenates the lists
- For numpy arrays, numpy performs an element-wise addition
- Similarly, for other binary operators such as , + , * , and /

```
In [7]: a_list = [1, 2]
b_list = [30, 40]
c_list = a_list + b_list
print(c_list)
a = np.array(a_list) # Create numpy array from Python list
b = np.array(b_list)
c = a + b
print(c)

[1, 2, 30, 40]
[31 42]
```

Adding scalar to vector

```
In [8]: # Adding scalar to list doesn't work
try:
        a_list + 1
except Exception as e:
        print(f'Exception: {e}' )

Exception: can only concatenate list (not "int") to list

In [9]: # Works with numpy arrays
a + 1

Out[9]: array([2, 3])
```

Inner product, dot product, or vector-vector product

• Inner product of two vectors produces scalar:

$$\mathbf{x}^T\mathbf{y} = \sum_i x_i y_i$$

Symmetric

$$\mathbf{x}^T \mathbf{y} = (\mathbf{x}^T \mathbf{y})^T = \mathbf{v}^T \mathbf{x}$$

• Can be executed in numpy via np.dot

```
In [11]: # Inner product
         a = np.arange(3)
         print(f'a={a}')
         b = np.array([11, 22, 33])
         print(f'b={b}')
          adotb = 0
          for i in range(a.shape[0]):
              adotb += a[i] * b[i]
         print(f'a^T b = {adotb}')
         a = [0 \ 1 \ 2]
         b=[11 22 33]
         a^T b = 88
 In [8]: # The numpy way via np.dot
         adotb = np.dot(a, b)
         print(f'a^T b = {adotb}')
         a^T b = 88
```

Matrices

- Denoted as uppercase letter (sometimes bolded, sometimes not)
- Access elements by double subscript $X_{i,j}$ or $x_{i,j}$ is the i,j-th entry of the matrix
- Examples
 - $X \in \mathbb{R}^{n \times d}$
 - $X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$

Matrix transpose

- · Changes columns to rows and rows to columns
- Denoted as A^T
- For vectors v, the transpose changes from a column vector to a row vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}, \qquad \mathbf{x}^T = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}^T = [x_1, x_2, \dots, x_d]$$

```
In [10]: A = np.arange(6).reshape(2,3)
    print(A)
    print(A.T)

[[0 1 2]
      [3 4 5]]
      [[0 3]
      [1 4]
      [2 5]]
```

NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a row or column vector per se. (Unlike MATLAB)

```
In [11]: v = np.arange(5)
         print(f'A numpy vector {v} with shape {v.shape}')
         print(f'Transpose of numpy vector {v.T} with shape {v.T.shape}')
         V = v.reshape(-1, 1)
         print(f'A matrix with shape {V.shape}:\n{V}')
         print(f'A transposed matrix with shape {V.T.shape}:\n{V.T}')
         A numpy vector [0 1 2 3 4] with shape (5,)
         Transpose of numpy vector [0 1 2 3 4] with shape (5,)
         A matrix with shape (5, 1):
         [0]]
          [1]
          [2]
          [3]
          [4]]
         A transposed matrix with shape (1, 5):
         [[0 1 2 3 4]]
```

Matrix product

• Let $\mathbf{X}^T \in \mathbb{R}^{m \times n}$, $\mathbf{Y} \in \mathbb{R}^{n \times p}$, then the matrix product $\mathbf{Z} = \mathbf{X}^T \mathbf{Y}$ is defined as:

$$\mathbf{Z} = \mathbf{X}^{T} \mathbf{Y} = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \end{bmatrix}^{T} \begin{bmatrix} \mathbf{y}_{1} & \mathbf{y}_{2} & \cdots & \mathbf{y}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1}^{T} \\ \mathbf{x}_{2}^{T} \\ \vdots \\ \mathbf{x}_{n}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{1} & \mathbf{y}_{2} & \cdots & \mathbf{y}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1}^{T} \mathbf{y}_{1} & \mathbf{x}_{1}^{T} \mathbf{y}_{2} & \cdots & \mathbf{x}_{1}^{T} \mathbf{y}_{n} \\ \mathbf{x}_{2}^{T} \mathbf{y}_{1} & \mathbf{x}_{2}^{T} \mathbf{y}_{2} & \cdots & \mathbf{x}_{2}^{T} \mathbf{y}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{n}^{T} \mathbf{y}_{1} & \mathbf{x}_{n}^{T} \mathbf{y}_{2} & \cdots & \mathbf{x}_{n}^{T} \mathbf{y}_{n} \end{bmatrix}$$

• Equivalently this can be written as:

$$z_{i,j} = \sum_{k \in \{1,2,\dots,n\}} x_{k,i} y_{k,j}$$

where $\mathbf{Z} \in \mathbb{R}^{m \times p}$ (notice how inner dimension is collapsed.

```
In [12]: | # Inner product version
         X = np.arange(6).reshape(2, 3)
         print(X.T)
         Y = np.arange(6).reshape(2, 3)
         print(Y)
         Z = np.zeros((X.shape[1], Y.shape[1]))
          for i in range(Z.shape[0]):
              for j in range(Z.shape[1]):
                      Z[i, j] = np.dot(X[:, i], Y[:, j])
         print(Z)
         [[0 3]
          [1 4]
          [2 5]]
         [[0 1 2]
          [3 4 5]]
          [[ 9. 12. 15.]
          [12. 17. 22.]
          [15. 22. 29.]]
```

```
In [13]: # Triple for loop
         X = np.arange(6).reshape(2, 3) * 10
         print(f'X with shape {X.shape}\n{X}')
         Y = np.arange(6).reshape(2, 3)
         print(f'Y with shape {X.shape}\n{X}')
          Z = np.zeros((X.shape[1], Y.shape[1]))
          for i in range(Z.shape[0]):
              for j in range(Z.shape[1]):
                  for k in range(X.shape[0]):
                      Z[i, j] += X[k, i] * Y[k, j]
         print(f'Z = X^T Y = \{n\{Z\}'\})
         X with shape (2, 3)
         [[ 0 10 20]
          [30 40 50]]
         Y with shape (2, 3)
         [[ 0 10 20]
          [30 40 50]]
         Z = X^T Y =
         [[ 90. 120. 150.]
          [120. 170. 220.]
          [150. 220. 290.]]
In [14]: # Numpy matrix multiplication
         print(np.matmul(X.T, Y))
         print(X.T @ Y)
         [[ 90 120 150]
          [120 170 220]
          [150 220 290]]
          [[ 90 120 150]
          [120 170 220]
          [150 220 290]]
```

Notice triple loop, naively cubic complexity $O(n^3)$

However, special linear algebra algorithms can do it $O(n^{2.803})$

Takeaway - Use numpy np.matmul (or @)

NOTE: Element-wise (Hadamard) product NOT equal to matrix multiplication

• Normal matrix mutiplication C = AB is very different from **element-wise** (or more formally **Hadamard**) multiplication, denoted $F = A \odot D$, which in numpy is just the star *

```
In [15]: print(f'X with shape {X.shape}\n{X}')
         print(f'Y with shape {Y.shape}\n{Y}')
             Z = X.T * Y # Fails since matrix shapes don't match and cannot broa
         dcast
         except ValueError as e:
             print('Operation failed! Message below:')
             print(e)
         X with shape (2, 3)
         [[ 0 10 20]
          [30 40 50]]
         Y with shape (2, 3)
         [[0 1 2]
          [3 4 5]]
         Operation failed! Message below:
         operands could not be broadcast together with shapes (3,2) (2,3)
In [16]: | print(f'X with shape {X.shape}\n{X}')
         print(f'Y with shape {Y.shape}\n{Y}')
         Zelem = X * Y # Elementwise / Hadamard product of two matrices
         print(f'X elementwise product with Y\n{Zelem}')
         X with shape (2, 3)
         [[ 0 10 20]
          [30 40 50]]
         Y with shape (2, 3)
         [[0 1 2]
          [3 4 5]]
         X elementwise product with Y
         [[ 0 10 40]
          [ 90 160 250]]
```

Properties of matrix product

- Distributive: A(B+C) = AB + AC
- Associative: A(BC) = (AB)C
- **NOT** commutative, i.e., AB = BA does **NOT** always hold
- Transpose of multiplication (switch order and transpose of both):

$$(AB)^T = B^T A^T$$

```
In [17]: A = X.T
          B = Y
          print('AB')
          print(np.matmul(A, B))
          print('BA')
          print(np.matmul(B, A))
          print('(AB)^T')
          print(np.matmul(A, B).T)
          print('B^T A^T')
          print(np.matmul(B.T, A.T))
          AΒ
          [[ 90 120 150]
           [120 170 220]
           [150 220 290]]
          [[ 50 140]
           [140 500]]
          (AB) ^T
          [[ 90 120 150]
           [120 170 220]
           [150 220 290]]
          B<sup>T</sup> A<sup>T</sup>
          [[ 90 120 150]
           [120 170 220]
           [150 220 290]]
```

Identity matrix keeps vectors unchanged

- Multiplying by the identity does not change vector (generalizing the concept of the scalar 1)
- Formally, $I_n \in \mathbb{R}^{n \times n}$, and $\forall \mathbf{x} \in \mathbb{R}^n, I_n \mathbf{x} = \mathbf{x}$
- Structure is ones on the diagonal, zero everywhere else:
- np.eye function to create identity

Matrix inverse times the original matrix is the identity

• The inverse of square matrix $A \in \mathbb{n} \times \mathbb{n}$ is denoted as A^{-1} and defined as:

$$A^{-1}A = I$$

• The "right" inverse is similar and is equal to the left inverse:

$$AA^{-1} = I$$

- Generalizes the concept of inverse x and $\frac{1}{x}$
- Does **NOT** always exist, similar to how the inverse of x only exists if $x \neq 0$

```
In [19]: A = 100 * np.array([[1, 0.5], [0.2, 1]])
         print(A)
         Ainv = np.linalg.inv(A)
         print(Ainv)
         print('A^{-1}A = ')
         print(np.dot(Ainv, A))
         print('A A^{-1}) = ')
         print(np.dot(A, Ainv))
         [[100. 50.]
          [ 20. 100.]]
         [[ 0.01111111 -0.00555556]
          [-0.00222222 0.011111111]
         A^{-1} A =
         [[1.0000000e+00 0.0000000e+00]
          [2.77555756e-17 1.00000000e+00]]
         A A^{-1} =
         [[1.00000000e+00 0.0000000e+00]
          [2.77555756e-17 1.00000000e+00]]
```

Summing or averaging along rows or columns in numpy

- · Many times we want to compute the sum or mean along rows or columns of a matrix
- We can do this using np.sum (or np.mean) or directly call the method of a number array A.sum or A.mean ## NOTE: The axis argument is very important.
- axis=None is full sum/mean of all entries in matrix/array
- axis=0 is sum along the rows
- axis=1 is sum along the columns

```
In [20]: A = np.arange(6).reshape(2,3)
         print(f'A\n{A}')
         print(f'np.sum(A)\n{np.sum(A)}')
         print(f'Row sum: np.sum(A, axis=0)\n{np.sum(A, axis=0)}')
         print(f'Column sum: np.sum(A, axis=1)\n{np.sum(A, axis=1)}')
         Α
         [[0 1 2]
          [3 4 5]]
         np.sum(A)
         Row sum: np.sum(A, axis=0)
         [3 5 7]
         Column sum: np.sum(A, axis=1)
         [ 3 12]
In [21]: A = np.arange(6).reshape(2,3)
         print(f'A\n{A}')
         print(f'np.mean(A)\n{np.mean(A)}')
         print(f'Row mean: np.mean(A, axis=0)\n{np.mean(A, axis=0)}')
         print(f'Column mean: np.mean(A, axis=1)\n{np.mean(A, axis=1)}')
         Α
         [[0 1 2]
          [3 4 5]]
         np.mean(A)
         2.5
         Row mean: np.mean(A, axis=0)
         [1.5 2.5 3.5]
         Column mean: np.mean(A, axis=1)
         [1. 4.]
```

Singular matrices are similar to zeros

- Informally, singular matrices are matrices that do not have an inverse (similar to the idea that 0 does not have an inverse)
- Consider the 1D equation ax = b
 - Usually we can solve for x by multiplying both sides by 1/a
 - But what if a = 0?
 - What are the solutions to the equation?
- Called "singular" because a random matrix is unlikely to be singular just like choosing a random number is unlikely to be 0.

```
In [22]: from numpy.linalg import LinAlgError
         def try inv(A):
             print('A = ')
             print(np.array(A))
             try:
                 np.linalg.inv(A)
             except LinAlgError as e:
                 print(e)
             else:
                 print('Not singular!')
             print()
         try_inv([[0, 0], [0, 0]])
         try_inv(np.eye(3))
         try_inv([[1, 1], [1, 1]])
         try_inv([[1, 10], [1, 10]])
         try_inv([[2, 20], [4, 40]])
         try_inv([[2, 20], [40, 4]])
         A =
         [[0 0]]
          [0 0]]
         Singular matrix
         A =
         [[1. 0. 0.]
          [0.1.0.]
          [0. 0. 1.]]
         Not singular!
         A =
         [[1 1]
          [1 1]]
         Singular matrix
         A =
         [[ 1 10]
          [ 1 10]]
         Singular matrix
         A =
         [[ 2 20]
          [ 4 40]]
         Singular matrix
         A =
         [[ 2 20]
          [40 4]]
         Not singular!
```

```
In [23]: # Random matrix is very unlikely to be 0
         for j in range(10):
            try_inv(np.random.randn(2, 2))
        A =
         [-0.28783057 1.24058109]]
        Not singular!
        A =
         [[0.90594568 0.65133893]
         [0.05166977 0.13215245]]
        Not singular!
        A =
         [[-0.28306113 \quad 1.65492987]
         [-0.90475151 - 0.63358282]]
        Not singular!
        A =
         [[-0.106285 -0.68840675]
         [ 0.75752887 -0.09858485]]
        Not singular!
        A =
         [-0.82518224 - 0.13220188]]
        Not singular!
        A =
         [[-1.47086157   1.56440777]
         [ 0.08434344 -0.83824042]]
        Not singular!
        A =
         [[ 1.25209955 -0.83272125]
         [ 0.86245367  0.80626788]]
        Not singular!
        A =
        [[-1.6308162 1.28271356]
         [-0.31821241 0.93890071]]
        Not singular!
        A =
        [[-1.49798653 -1.65276761]
         [-1.85839339 1.02742327]]
        Not singular!
        A =
         [[-0.42220269 -1.20575756]
         [-0.72521405 -1.17221614]]
        Not singular!
```

Linear set of equations can be compactly represented as matrix equation

• Example:

$$2x + 3y = 6$$
$$4x + 9y = 15.$$

Solution is $x = \frac{3}{2}$, y = 1

• More general example:

$$a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 = b_1$$

 $a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 = b_2$
 $a_{3,1}x_1 + a_{3,2}x_2 + a_{3,3}x_3 = b_3$

is equivalent to:

$$A\mathbf{x} = \mathbf{b}$$

where $A \in \mathbb{R}^{3,3}$, $\mathbf{x} \in \mathbb{R}^3$ and $\mathbf{b} \in \mathbb{R}^3$.