3/6/2020 review-of-linear-algebra

Brief Review of Linear Algebra

Content and structure mainly from: http://www.deeplearningbook.org/contents/linear_algebra.html

(http://www.deeplearningbook.org/contents/linear_algebra.html)

In [2]: import numpy as np
import matplotlib.pyplot as plt

Scalars

» Single number
» Denoted as lowercase letter
o Examples
= x € R - Real number
» z € Z - Integer
» ye {0,1,...,C} - Finite set
= u € [0, 1] - Bounded set

In [2]: x = 1.1343
print(x)
z = int(-5)
print(z)

1.1343
-5

Vectors

» In notation, we usually consider vectors to be "column vectors"
« Denoted as lowercase letter (often bolded)
« Dimension is often denoted by d, D, or p.
» Access elements via subscript, e.g., X; is the i-th element
» Examples
» x € R? - Real vector
X1

>%)

Xd
= X = [Xx7,X,--- ,xd]T

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false

1/13


http://www.deeplearningbook.org/contents/linear_algebra.html

3/6/2020

In [4]:

review-of-linear-algebra

X = np.array([1.1343, 6.2345, 35])

print(x)

z = 5 * np.ones(3, dtype=int)
print(z)

[ 1.1343 6.2345 35. ]
[55 5]

Adding vectors in numpy

Note: The operator + does different things on numpy arrays vs

Python lists

» For lists, Python concatenates the lists
« For numpy arrays, numpy performs an element-wise addition

 Similarly, for other binary operators suchas -, +, *,and /
In [7]: a_list = [1, 2]

b list = [30, 40]

c list = a list + b_list

print(c_list)

a = np.array(a_list) # Create numpy array from Python list
b = np.array(b list)

c=a+b

print(c)

[1, 2, 30, 40]
[31 42]

Adding scalar to vector

In [8]:
In [9]:
Oout[9]:

# Adding scalar to list doesn't work
try:

a list + 1
except Exception as e:

print (f'Exception: {e}' )

Exception: can only concatenate list (not "int") to list

# Works with numpy arrays
a + 1

array([2, 31)

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false

2/13



3/6/2020

Inner product, dot product, or vector-vector product

« Inner product of two vectors produces scalar:

xX'y=) xiy
i

» Symmetric

x'y=

» Can be executed in numpy via np.dot

In [11]:

In [8]:

# Inner product

a = np.arange(3)

print(f'a={a}"')

b = np.array([11, 22, 33])

print (f'b={b}")

adotb = 0

for i in range(a.shape[0]):
adotb += a[i] * b[i]

print(f'a”"T b = {adotb}')

a=[0 1 2]
b=[11 22 33]
a’"T b = 88

# The numpy way via np.dot
adotb = np.dot(a, b)
print(f'a”"T b = {adotb}')

a"T b = 88

Matrices

» Denoted as uppercase letter (sometimes bolded, sometimes not)

« Access elements by double subscript X; ; or X; ; is the i, j-th entry of the matrix

» Examples
- X E Rnxd

s X =

[123]
4 5 6

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false

review-of-linear-algebra

'y’ =y'x

3/13



3/6/2020 review-of-linear-algebra

In [9]: X = np.arange(l2).reshape(3,4)
print (X)
Z =5 * np.ones((3, 3), dtype=int)
print(2z)

[[0 1 2 3]
4 5 6 7]
8 9 10 117]]
55 5]
[55 5]

[5 5 5]]

[
[
[
[l

Matrix transpose

« Changes columns to rows and rows to columns
« Denoted as AT
» For vectors v, the transpose changes from a column vector to a row vector

T
X1 X1
X2 X2
T
x=| |, X =] = [x1, X2, ..., X4]
Xq Xd

In [10]: A = np.arange(6).reshape(2,3)
print(A)
print(A.T)

[[0 1 2]
[3 4 5]]
(10 3]
[1 4]
[2 5]]

NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a row or
column vector per se. (Unlike MATLAB)

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false 4/13



3/6/2020

In [11]:

review-of-linear-algebra

v np.arange(5)

print (f'A numpy vector {v} with shape {v.shape}')

print (f'Transpose of numpy vector {v.T} with shape {v.T.shape}')
\Y v.reshape(-1, 1)

print(f'A matrix with shape {V.shape}:\n{V}')

print(f'A transposed matrix with shape {V.T.shape}:\n{V.T}')

A numpy vector [0 1 2 3 4] with shape (5,)
Transpose of numpy vector [0 1 2 3 4] with shape (5,)
A matrix with shape (5, 1):
[[0]

[1]

[2]

[3]

[4]]
A transposed matrix with shape (1,
[[01 2 3 4]]

5):

Matrix product

e Let X' € R™" Y € R™?, then the matrix product Z = X' Y is defined as:

T T

T T

X; Xy xyn X; Yn

T T T T
T T X Y1 XKW X ¥n

2=X"Y=[xix% %] [Vi¥2 = ¥]=|  |[niy W=
| x5 | Xiy1 XnY, X Vo
« Equivalently this can be written as:
Zjj = Z Xk,i Vk,j
ke(1,2,...,n}

where Z € R™*? (notice how inner dimension is collapsed.

In [12]:

# Inner product version
X np.arange(6).reshape(2,
print (X.T)
Y np.arange(6).reshape(2,
print(Y)
Z = np.zeros((X.shape[l], Y.shape[l]))
for i in range(Z.shape[0]):

for j in range(Z.shape[l]):

3)

3)

Zz[i, j]1 = np.dot(X[:, 11, Y[:, 1)

print(Zz)
(o 3j

[1 4]

[2 5]]
[[0 1 2]

[3 4 5]1]

[[ 9. 12. 15.]

[12. 17. 22.]

[15. 22. 29.1]

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false

5/13



3/6/2020 review-of-linear-algebra

In [13]: # Triple for loop

X = np.arange(6).reshape(2, 3) * 10
print(f'X with shape {X.shape}\n{X}')
Y = np.arange(6).reshape(2, 3)
print(f'Y with shape {X.shape}\n{X}')
Z = np.zeros((X.shape[l], Y.shape[l]))
for i in range(Z.shape[0]):

for j in range(Z.shape[l]):

for k in range(X.shape[0]):
z[i, j1 += X[k, i1 * Y[k, 3]

print(f'Z = X"T Y =\n{2Z}"')

X with shape (2, 3)
[[ 0 10 20]
[30 40 50]]
Y with shape (2, 3)
[[ 0 10 20]
[30 40 50]]
Z =X"TY =
[[ 90. 120. 150.]
[120. 170. 220.]
[150. 220. 290.1]

In [14]: | # Numpy matrix multiplication
print(np.matmul (X.T, Y))
print(X.T @ Y)

[[ 90 120 150]
[120 170 220]
[150 220 290]]

[[ 90 120 150]
[120 170 220]
[150 220 290]]

Notice triple loop, naively cubic complexity O(»>)

However, special linear algebra algorithms can do it O(n2'803)

Takeaway - Use numpy np.matmul (or @)

NOTE: Element-wise (Hadamard) product NOT equal to matrix
multiplication

« Normal matrix mutiplication C = A B is very different from element-wise (or more formally Hadamard)
multiplication, denoted F' = A ® D, which in numpy is just the star *

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false 6/13



3/6/2020

In [15]:

In [16]:

review-of-linear-algebra

print(f'X with shape {X.shape}\n{X}')
print(f'Y with shape {Y.shape}\n{Y}')
try:

Z = X.T *Y # Fails since matrix shapes don't match and cannot broa

dcast
except ValueError as e:

print( 'Operation failed! Message below:')

print(e)

X with shape (2, 3)
[[ 0 10 20]
[30 40 50]]1
Y with shape (2, 3)
(o1 2j
[3 4 5]1]
Operation failed! Message below:

operands could not be broadcast together with shapes (3,2)

print(f'X with shape {X.shape}\n{X}')
print(f'Y with shape {Y.shape}\n{Y}')

Zelem = X * Y # Elementwise / Hadamard product of two matrices
print(f'X elementwise product with Y\n{Zelem}')

X with shape (2, 3)
[[ 0 10 20]
[30 40 50]]
Y with shape (2, 3)
([0 1 2]
[3 4 5]]
X elementwise product with Y
[[ 0 10 40]
[ 90 160 250]]

Properties of matrix product

« Distributive: A(B+ C) = AB+ AC
 Associative: A(BC) = (AB)C
o NOT commutative, i.e., AB = BA does NOT always hold

» Transpose of multiplication (switch order and transpose of both):

(AB)T = BT AT

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false

713



3/6/2020

In [17]: A = X.T
B =Y
print('AB'")
print(np.matmul (A, B))
print('BA")
print(np.matmul (B, A))
print (' (AB)"T")
print(np.matmul (A, B).T)
print('B"T A"T")
print(np.matmul(B.T, A.T))

AB

[[ 90 120 150]
[120 170 220]
[150 220 290]]

BA

[[ 50 140]
[140 5007]
(AB)"T

[[ 90 120 150]
[120 170 220]
[150 220 290]]

BT A"T

[[ 90 120 150]
[120 170 220]
[150 220 290]]

Identity matrix keeps vectors unchanged

Multiplying by the identity does not change vector (generalizing the concept of the scalar 1)

Formally, I, € R™" andVx € R", I,x = x

review-of-linear-algebra

» Structure is ones on the diagonal, zero everywhere else:

 np.eye function to create identity

In [18]: I3 = np.eye(3)
print(I3)
X = np.random.randn(3)
print(x)
print(np.dot (I3, x))

[[l. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

[-0.1490468
[-0.1490468

0.14624658 -0.17358999]
0.14624658 -0.17358999]

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false

8/13



3/6/2020 review-of-linear-algebra

Matrix inverse times the original matrix is the

identity

» The inverse of square matrix A € n X n is denoted as A~! and defined as:

AT A=

AA7! =

Generalizes the concept of inverse x and %

In [19]: A = 100 * np.array([[l, 0.5], [0.2,
print(A)
Ainv = np.linalg.inv(A)
print (Ainv)

print('A"{-1} A = ")
print(np.dot(Ainv, A))
print('A A"{-1} = ")

print(np.dot (A, Ainv))

[[100. 50.]
[ 20. 100.]]

[[ 0.01111111 -0.00555556]
[-0.00222222 0.011111117]]

A" {-1} A =

[[1.00000000e+00 0.00000000e+00]
[2.77555756e-17 1.00000000e+00] ]

A AN {-1} =

[[1.00000000e+00 0.00000000e+00]
[2.77555756e-17 1.00000000e+00] ]

Summing or averaging along rows or columns in

numpy

« Many times we want to compute the sum or mean along rows or columns of a matrix
» We can do this using np.sum (or np.mean ) or directly call the method of a numpy array A.sum or

1

The "right" inverse is similar and is equal to the left inverse:

1

Does NOT always exist, similar to how the inverse of x only exists if x # 0

11

A.mean ## NOTE: The axis argument is very important.

» axis=None is full sum/mean of all entries in matrix/array
e axis=0 is sum along the rows
e axis=1 is sum along the columns

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false

9/13



3/6/2020

In [20]:

In [21]:

review-of-linear-algebra

A = np.arange(6).reshape(2,3)

print(f£f'A\n{A}")

print(f'np.sum(A)\n{np.sum(A)}")

print (f'Row sum: np.sum(A, axis=0)\n{np.sum(A, axis=0)}")
print (f'Column sum: np.sum(A, axis=1)\n{np.sum(A, axis=1)}")

A
(o1 2j
[3 4 5]1]
np.sum(A)
15
Row sum: np.sum(A, axis=0)
[3 5 7]
Column sum: np.sum(A, axis=1)
[ 3 12]

A = np.arange(6).reshape(2,3)

print(f'A\n{A}")

print(f'np.mean(A)\n{np.mean(A)}")

print(f'Row mean: np.mean(A, axis=0)\n{np.mean(A, axis=0)}")
print (f'Column mean: np.mean(A, axis=1l)\n{np.mean(A, axis=1)}")

A
([0 1 2]
[3 4 5]]
np.mean(A)
2.5
Row mean: np.mean(A, axis=0)
[1.5 2.5 3.5]
Column mean: np.mean(A, axis=1)
[1. 4.]

Singular matrices are similar to zeros

 Informally, singular matrices are matrices that do not have an inverse (similar to the idea that 0 does not
have an inverse)
» Consider the 1D equation ax = b
= Usually we can solve for x by multiplying both sides by 1/a
» But whatifa = 0?
» What are the solutions to the equation?
» Called "singular" because a random matrix is unlikely to be singular just like choosing a random number is
unlikely to be O.

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false 10/13



3/6/2020

In [22]:

review-of-linear-algebra

from numpy.linalg import LinAlgError

def try inv(A):

print('A = ")
print(np.array(Aa))
try:

np.linalg.inv(A)
except LinAlgError as e:
print(e)
else:

print( 'Not singular!')

print ()

try_inv([[O0, O], [0, O0]1)
try inv(np.eye(3))

try inv([[1, 1], [1, 111)
try inv([[1l, 10], [1, 10]1)
try_inv([[2, 20], [4, 401])
try_inv([[2, 20], [40, 4]11)

A =

[[0 0]

[0 0]]
Singular matrix

A =

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

Not singular!

A =
[[1 1]

[1 1]]
Singular matrix

A =

([ 110]

[ 1 10]]
Singular matrix

A =

([ 2 20]

[ 4 40]]
Singular matrix

A =

[ 2 20]

[40 4]]
Not singular!

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false

11/13



3/6/2020

In [23]:  # Random matrix is very unlikely to be 0

for j in range(10):

try inv(np.random.randn(2, 2))

A =

[[ 1.82474909
[-0.28783057

Not singular!

A =

1.
1.

80522373
240581091 ]

[[0.90594568 0.65133893]
[0.05166977 0.13215245]]

Not singular!

A =

[[-0.28306113
[-0.90475151
Not singular!

A =
[[-0.106285

[ 0.75752887
Not singular!

A =

[[ 0.39477096
[-0.82518224

Not singular!

A =

[[-1.47086157
[ 0.08434344

Not singular!

A =

[[ 1.25209955
[ 0.86245367

Not singular!

A =

[[-1.6308162
[-0.31821241
Not singular!

A =

[[-1.49798653
[-1.85839339
Not singular!

A =

[[-0.42220269
[-0.72521405
Not singular!

-0.
-0.

-1

.65492987]
.63358282]]

68840675]
098584851]]

.05174841]
.13220188]]

.56440777]
.83824042]]

.83272125]
.80626788]]

.28271356]
.938900717]

.65276761]
.02742327]]

.20575756]
-1.

1722161471}

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false

review-of-linear-algebra

12/13



3/6/2020 review-of-linear-algebra

Linear set of equations can be compactly represented
as matrix equation

o Example:
2x +3y= 6
4x + 9y = 15.
Solution is x = %, y=1
» More general example:
ay1xp +ajpxy +ay3xs = by
a1 X1 + Xy + ar3x3 = by

az1 X1 + a3 Xy + az3x3 = bs
is equivalent to:

Ax=Db
where A € R*?,x € R*and b € R3.

localhost:8888/nbconvert/html/review-of-linear-algebra.ipynb?download=false 13/13



