2/3/2020

In [2]:

In [3]:

In [4]:

In [6]:

out[6]:

In [7]:

Out[7]:

higher-order-functions - Jupyter Notebook

Higher Order Functions

You're used to seeing functions defined in Python:

def meaningOfLife(x)
return 42 * x

print (meaningOfLife(7))
294
But what you may not be used to is that functions in Python are just like any other piece of data.

That means that you can assign them to variables. And when you do, you can treat those variables
as though they are just accessing the function:

f = meaningOfLife
print (£(7))
294

Because functions act like any other data in Python, we call them first class. This means that we
can, for example, pass them in as arguments to another function.

def foo(fun, x)
return 2 * fun(x)

Note that foo here has behavior that changes based on what fun is. If we pass different
functions in to foo , it will do different things. We call foo a higher order function.

foo(f, 7)

588

def other(x)
return 39 * x

foo(other, 7)

546

Filter

One of the best uses of higher order functions is to build generic helper functions that do different
things based on the function you pass in to it.

Suppose we want to write a filter function, that only keeps data within a certain range:

localhost:8888/notebooks/higher-order-functions.ipynb#

1/9

2/3/2020

In [8]:

In [9]:

In [107]:

In

[117]:

higher-order-functions - Jupyter Notebook

import numpy as np
data = np.loadtxt('inp.txt')
print(len(data))

1000

print(data[:10])

[23.09471005 22.25991168 35.93632832 44.61182845 32.15680942 34.76223471
46.67180901 31.88987773 40.08096148 37.23492821]

def simpleFilter(data)
res = []
for d in data :
if d >= 40 and d <= 60
res.append(d)
return res

filtered = simpleFilter(data)
print(len(filtered))
print(filtered[:101])

469

[44.611828449897416, 46.67180901057549, 40.080961476474215, 44.8976241688
8816, 46.52490829991481, 42.629775565805254, 57.721400483572964, 51.92827
054817613, 47.94710023174243, 43.82490586318856]

But now we want to change the filter to keep data in a different range. It looks like we have to
rewrite the function:

def simpleFilter(data)
res = []
for d in data :
if d >= 60 and d <= 80 :
res.append(d)
return res

filtered = simpleFilter(data)
print(len(filtered))
print(filtered[:10])

22

[61.30216262756785, 70.18292815593877, 61.25057319688144, 60.252100564844
14, 61.41859000380041, 76.78503985833532, 60.008518770302615, 68.14344504
205286, 68.33551199471, 64.8951874891759]

One option is to add some additional parameters to our filter function. For example, we could add
parameters to define the lower and upper bounds of the range we want to filter:

localhost:8888/notebooks/higher-order-functions.ipynb# 2/9

2/3/2020

In [14]:

In [15]:

In [16]:

In [20]:

Out[20]:

higher-order-functions - Jupyter Notebook

def simpleFilter(data, lo, hi)
res = []
for d in data :
if d >= lo and d <= hi :
res.append(d)
return res

filtered = simpleFilter(data, 40, 60)
print(len(filtered))
print(filtered[:10])

469

[44.611828449897416, 46.67180901057549, 40.080961476474215, 44.8976241688
8816, 46.52490829991481, 42.629775565805254, 57.721400483572964, 51.92827
054817613, 47.94710023174243, 43.82490586318856]

filtered = simpleFilter(data, 60, 80)
print(len(filtered))
print(filtered[:10])

22

[61.30216262756785, 70.18292815593877, 61.25057319688144, 60.252100564844
14, 61.41859000380041, 76.78503985833532, 60.008518770302615, 68.14344504
205286, 68.33551199471, 64.8951874891759]

But that is not satisfying. What if we want to create a filter that does something entirely different,
like keep numbers that are outside a range, or keep numbers that are even? We cannot use

simpleFilter anymore. We would need to write something different each time we wanted to do
a different kind of filtering.

So can we do better? What if we take advantage of higher order functions? Suppose we write a
filter that keeps data that pass a test and then pass the test to the filter? Let's write some simple
tests:

def inRange40 60(d)
return True if d >= 40 and d <= 60 else False

inRange40 60(45)

True

inRange40 60(85)

False

def inRange60 80(d)
return True if d >= 60 and d <= 80 else False

inRange60 80(65)

True

localhost:8888/notebooks/higher-order-functions.ipynb#

3/9

2/3/2020

In [21]:
Out[21]:
In [22]:
In [23]:
In [24]:
In [26]:
In [27]:
In [28]:

higher-order-functions - Jupyter Notebook

inRange60 80(85)

False

Now we can write a filter that accepts atest p (p here stands for predicate):

def higherOrderFilter(data, p)

res = []
for d in data :
if p(d)
res.append(d)

return res
filteredl = higherOrderFilter(data, inRange40 60)
print(len(filteredl))
469
filtered2 = higherOrderFilter(data, inRange60 80)
print(len(filtered2))
22

def outOfRange(d) :
return True if d < 40 or d > 60 else False

filtered3 = higherOrderFilter(data, outOfRange)
print(len(filtered3))

531

Returning functions from functions

Now we have a completely generic function. But suppose we want to simplify the process of
creating tests? Instead of defining a new function from each test, what if we can write a function
that defines new functions for us? To do this, we will take advantage of returning functions from
functions:

def createRangeP(lo, hi) :
def p(d)
return True if d >= lo and d <= hi else False
return p

It can be a little hard to understand what createRangeP is doing, so let's look at a couple of
examples:

pl = createRangeP (40, 60)
p2 = createRangeP (60, 80)

localhost:8888/notebooks/higher-order-functions.ipynb#

4/9

2/3/2020

In [29]:

Oout[29]:

In [30]:

Out[30]:

In [31]:

Out[31]:

In [32]:

Out[32]:

In [35]:

out[35]:

higher-order-functions - Jupyter Notebook

pl(45)

True

pl(65)

False

p2(45)

False

p2(65)

True

Think about what happens when createRangeP runs. When it does, it defines a new function
called p . That function has specific values for 1o and hi (because we passed them in to

createRangeP , SO p is specialized for that particular range. We then return this newly created
function. Note that we have not actually run p yet. Instead, p is now a function that runs a test
on its input argument, x . We then run it later, as we did above.

We can now use the newly created functions in our filter:

len(higherOrderFilter(data, pl))

469

len(higherOrderFilter(data, p2))

22

We can also skip the step of assigning the result of createRangeP to a variable:

len(higherOrderFilter(data, createRangeP (45, 75)))

298

In class, we looked at a couple of other uses of returning functions from a function. For example,
here is a function that takes in two tests (funl and fun2) and returns a new test that returns
true if both funl and fun2 pass:

localhost:8888/notebooks/higher-order-functions.ipynb# 5/9

2/3/2020 higher-order-functions - Jupyter Notebook

In [37]: def createAnd(funl, fun2) :
def p(x)
return funl(x) and fun2(x)
return p

def keepEven(x)
return (int(x) % 2 == 0)

andP = createAnd(keepEven, createRangeP (45, 75))
len(higherOrderFilter(data, andP))

out[37]: 150

As promised, here's a version of createAnd that takes in a whole list of functions and creates a
new test that returns true if all of the functions are true. And as a bonus, a createOr :

In [39]: def createAndL(funcList) :
def p(x)
res = True
for £ in funcList :
res = res and f(x)
return res
return p

def createOrL(funcList)
def p(x)
res = False
for £ in funcList :
res = res or f(x)
return res
return p

Map and Reduce

Map and reduce are two of the most common higher-order functions. Map takes a list and a
function and returns a new list where each element of the new list is an element from the first list
with the function applied to it:

In [40]: def myMap(inp, f) :
res = []
for i in inp
res.append(£f(i))
return res

In [41]: def sg(x) : return x * X

In [42]: small = [5, 1, 3, 7, 4, 8, 9]

localhost:8888/notebooks/higher-order-functions.ipynb# 6/9

2/3/2020

In [43]:
Out[43]:
In [44]:
In [45]:
In [46]:
In [49]:
In [50]:
out[50]:
In [51]:
In [52]:
out[52]:
In [53]:
Out[53]:

higher-order-functions - Jupyter Notebook

myMap(small, sq)

[25, 1, 9, 49, 16, 64, 81]

Instead of defining a new function every time we want to use it in a higher order function, we can
use a lambda to define a function at the same time we need it:

squared = myMap(small, lambda x : X * X)
print (squared)

[25, 1, 9, 49, 16, 64, 81]

Reduce takes a list and combines together all the elements by calling a function £ over and over
that combines the numbers (e.g., adds them together):

def myReduce(inp, f, start) :# f(curr, i) -> curr'
curr = start
for i in inp
curr = f(curr, i)
return curr

sums = myReduce(small, lambda curr, i : curr + i, 0)
print (sums)
37
def average(inp)
return (myReduce(inp, lambda curr, i : curr + i, 0) / len(inp))
average(small)

5.285714285714286

We can combine map and reduce to compute more complicated things:

def variance(inp) :
avg = average(inp)
diffs = myMap(inp, lambda x : x - avg)
sq diffs = myMap(diffs, lambda x : x * X)
return average(sq_diffs)

variance(small)

7.061224489795919

variance(data)

101.95142988919245

List comprehensions

localhost:8888/notebooks/higher-order-functions.ipynb#

7/9

2/3/2020

In [54]:

Out[54]:

In

[56]:

Out[56]:

[sg(d) for d in data]

[533.3656322013799,

495.50366794291506,
1291.4196930422397,
1990.2152376430765,
1034.0603921777931,
1208.412961772856,
2178.257756319635,
1016.9643014619114,
1606.4834728786102,
1386.4398786509048,
499.9852990840247,
2015.79665601073,
2164.567092315482,
1817.2977647909267,
978.8274925683775,
672.2174336543578,
1319.7606066038156,
3331.760073785017,
2696.5452821245763,

higher-order-functions - Jupyter Notebook

If you read a lot of Python code, you won't often see people using map and filter , because
the same thing can be done more concisely using list comprehensions:

Read this "inside out": for each d in data, apply the function sq(d) , and put the results into an

output list (note that data itself does not change).

We can also combine this with filter:

[sg(d) for d in data if keepEven(d)]

[495.50366794291506,

1990.2152376430765,
1034.0603921777931,
1208.412961772856,
2178.257756319635,
1606.4834728786102,
499.9852990840247,
2015.79665601073,
2164.567092315482,
1817.2977647909267,
1319.7606066038156,
603.4313675120274,
1049.0582561292456,
1493.1914713711317,
788.9221757691865,
944.2025860311232,
1631.8857770260788,
2534.094848066772,
839.3604062703818,

localhost:8888/notebooks/higher-order-functions.ipynb#

Which now says: for each d in data, if keepEven(d) is true, compute sq(d) and put the result
in an output list.

8/9

2/3/2020 higher-order-functions - Jupyter Notebook

localhost:8888/notebooks/higher-order-functions.ipynb# 9/9

