ECE 20875
Python for Data Science

Chris Brinton and David Inouye

n-grams and basic natural
language processing

text data analysis

analysis Dirichlet Allocation (LDA)
e Some types of analyses: documents: combinations of topics
topics: combinations of words \
» Measuring similarity between documents -
Topics Documents Top i(;g sr;)g;;o ’:Z,';: and
« Extracting topics from documents B | Sethina tes Bare (Qemetc Noceseto \
» Finding the most frequently occurring words it
e Quantifying the importance of phrases »e
* Most of these involve breaking up documents s

iInto words or “n-grams”

n-grams

* n-grams break up a sentence into overlapping subsequences of length n

* n typically refers to words or characters (though it could also be e.g., syllables)

* Unigrams (n=1), bigrams (n=2), trigrams (n=3), ...

word-based n-gram extraction

 Consider the string: “I saw a cat”

///,iﬁi;,

This|i

IS

d

sentence

. IS,
unigrams:

 Word-based 3-grams:

————___ sentence
P

This|i

IS

d

sentence

this is,
bigrams: isa,
a sentence

“I saw a”, ‘“saw a cat”

This|is a

\

* Character-based 3-grams:

, his is a,
Se ntence@ sentence

CCII_IS)JJ f(_lsa)J, ffsaw)), “a\/\l_.”, ffwl_la)JJ CCI .a. .,,’ C(al_lc)), CCI_Ica)), C‘CcatJ}

bag-of-words

The same n-gram can appear multiple times in a string

Raw Text Bag-of-words
vector

TI0

* This indicates a higher frequency

Generally we only care about order within an n-gram, not between n-
grams

Bag-of-words model: Order between words (more generally, between n-
grams) in a document is not considered

itisapuppyandit| .,
is extremely cute | ./

7 |+ aardvark n

' cute n

extremely n

* Where would the 0s come from?

 We call it “bag-of-words,” but it’s really “bag-of-n-grams”

For example, consider this string: “wan can cup”

* bag-of-words of character-based 3-grams:

wan : 1 an__, . 2 n_.c . 2 _
* We often compare documents by their

.Ca:1 can:1 _cu:1 cup:1 bag-of-words representations

language classification

 Consider the commonly encountered language classification problem, i.e.,
identifying the language in which a document is written

* We could consider the n-grams of characters contained in the document

* Documents written in a particular language unigram bigram trigram
will tend to have similar n-gram frequencies : i -t i e
(e.g., “the” in English vs. “el” in Spanish) pia i~ > e R

| 6.9% an 2.1% nat 0.7%

« We can compare a document of interest to - oA I

n 6.2% on 1.4% ere 0.6%

known n-gram language frequencies
* Can visualize this by building a histogram of the n-grams

* Treat each n-gram across the documents as a separate (categorical) bucket

0.0175 -

0.0150 -

0.0125 -

0.0100 -

0.0075 A

0.0050 -

0.0025 -

0.0000

n-gram histogram examples

n-grams in French document

IL.L.JMIMLMXMR[.II'me.JJiwﬂfLJL11LnI@“l TIR®

0 20 40 60 80 100

0.014 A

0.012 A

0.010 A

0.008 A

0.006 A

0.004 A

0.002 A

n-grams in English document

wj, b bl sl l I

0.000

0 20 40 60 80 100

0.020 -

0.015 -

0.010 A

0.005 ~

0

n-grams in Spanish document

0.000 _m@m

20 40 60 80 100

0.0200 A

0.0175 A

0.0150 A

0.0125 A

0.0100 A

0.0075 A

0.0050 A

0.0025 A

n-grams in mystery document

0.0000

0

20 40 60 80 100

« How would we quantify
which language Is
“closest” to the
mystery document?

e We could use the MSE
between the n-gram
vectors

n-gram importance

* How do we quantify the importance of an n-gram in a document?

Tinker Bell pocanis & @
animation Pter Pan Mermaid 9 o

cchio
e

. . . o loionintiood Doves S J2 2
One possibility: Count the number of times it occurs, LS, © QUM
: G S=

nnt
magi
2 €£¥Doc

Scro

Esmeralda
6).1 Dalmatians
ream-

D
Happy: =

e., Its frequency

ald Du’c
eYMa
2 3
3 §§a
=

sne
Daisy
Hollywood

$l¢¢pg
Doo

 More frequently occurring should be more important

Sncezg
“ Pantasia

Dm'..sg."f,%l Dal§ Walt
"m‘;““"l'heme Park
13 PR L r? Captam I-Iook

as”, “is”, ..."

e But what about common words like

These specific examples are stopwords, which we should probably remove from the
analysis of “importance” anyway

 But many high frequency non-stopwords will not provide much information in a given
context (e.g., “Disney” in a collection of documents about “Disney World”)

* Need to somehow measure how “unigque” the n-gram is across documents

The Lion King

tf-1df score

» A statistic that quantifies this intuition is the term

frequency-inverse document frequency or tf-idf score Corpus
* One of the most popular schemes used today < 1 ¢ Yo snudy the compledty

-n

K of influencing elections
. _ ¢ \ through bribery: How

r computationally complex
is it for an external actor
to determine whether by
a certain amount of
bribing voters a specified
candidate can be made
¢ the election’s winner? We
this problem for
. systems as varied

das sconng ...

document

tfidf(s,d, D) = tf(¢t,d) - 1df(¢, D) Here we we will assume terms

are words, but more generally
they can be n-grams

- M

» Let 7 be aterm (n-gram), d be a document, and D be a
corpus (collection of documents) under consideration

LAD = ™ A" -
M AA_rr
AT ™. N

1

» The tf-idf score of term 7 in document d with respect to

corpus D is torm

 Many different methods for quantifying tf and 1df

tf-1df score

« Term frequency tf(z, d): Typically the fraction of terms in document d
which are term ¢

The 17 | 177 0g(2/2) = 0 0 0
« Letting f, ; be the number of occurrences of ¢ in d, Al V7 1 0 | logl2/1)=058 | 0043. 0
’ Truck 0 1/7 log(2/1) = 0.3 0 0.043

Is 1/7 1/7 log(2/2) = 0 0 0

ft y Driven 17 | 177 0g(2/2) = 0 0 0

t£(t,d) = ’ On 17 | 177 0g(2/2) = 0 0 0

z f, The 1/7 1/7 log(2/2) = 0 0 0

pJtd Road 1/7 0 | log(21)=03 | 0043] 0
Highway 0 1/7 | log2/1)=03 | 0 0.043

* Inverse document frequency 1df(z, D): A measure of how

rare term ¢ is across the corpus D (i.e., how much information e
it provides about a document it appears in)

Zipf plot for Brown corpus tokens

10

» Letting N = | D | be the number of documents in the corpus and n, be

10°

the number of documents where f occurs, it is typically quantified as

10° b

—1
N 10* F

n
idf (s, D) = log,, Nt = logyg ; Why log?
[

Absolute frequency of token

100 - 1 . 1 : ; | - N
10 10 10° 10 107 10°
Frequency rank of token

example

Dataset: Take the following four strings to be (very small) documents
comprising a (very small) corpus:

1. “The sky is blue.”
2. “The sun 1is bright today.”
3. “The sun in the sky is bright.”

4. “We can see the shining sun, the bright sun.”

Task: Filter out obvious stopwords, and determine the tf-idf scores of each
term in each document.

solution

o After stopword filtering: (1) “sky blue”, (2) “sun bright today”, (3) “sun
sky bright”, (4) “can see shining sun bright sun”

e TF: Find doc-word matrix, then normalize rows to sum to 1

I tf(t,d) = ’

blue bright can see shining sky sun today blue bright can see shining sky sun today

solution

 IDF: Find number of documents each word occurs in, then compute formula

. N
[

blue bright can see shining sky sun today

1 1 0 0 0 0 1 0 0

blue bright can see shining sky sun today
2 0 1 0 0 0 0 1 1

0.602 0.125 0.602 0.602 0.602 0.3010.125 0.602
3 0 1 0 0 0 1 1 0 ‘)
4 0 1 1 1 1 0 2 0 N =4

4 4
JEE 1 3 1 1 1 2 3 1 log;g T 0.602 log;g 3 0.125

solution

idf(z, D)

blue bright can see shining sky sun today

blue bright can see shining sky sun today

2 0 1/3 0 0 0 0 1/3 1/3 0.602 0.125 0.602 0.602 0.602 0.301 0.125 0.602

tfidf(¢,d, D) = t£(¢t,d) - 1df(¢, D)

® TF-'DF MUltlply TF and |D|: scores, blue bright can see shining sky sun today
use to rank importance of words M 0301 0 0 O 0 0151 O 0
within documents *
2 O 0.0417 O 0 0 O 0.0417 0.201
° MOSt important WOrd for eaCh 3 O 0.0417 O 0 O 0.100 0.0417 0

document is highlighted 88 0 00209 0.100 0.100 0.100 O 00417 O

text preprocessing

* Typically apply a series of preprocessing steps prior to analysis MacHine LeArning.
it 1s Important!
 Mostly using Python’s nltk (natural language processing toolkit) library l
1. Tokenization

* Break text into tokens, e.g., n-grams of words l

(hltk.word tokenize(string) or string.split()) 'MacHine, LeArning

it, is, Important]
 Remove non-word characters, e.g., punctuation

2. Stopword removal stopword
removal
« Make words lowercase (s.lower()) l
e Remove common word tokens (stopwords.words(‘english’)) [machine, learning,

important]

text preprocessing

3. Stemming / Lemmatizing

 Stemming reduces inflected words to their word stem (e.g.,
studies, studying -> studi)

* Lemmatization maps words to their dictionary form,
representing them as words (e.g., studies, studying —>

study)

* Requires part-of-speech (POS) specification
 Lemmatization is more complex (we need to tag a words

POS to get the right result), but preferred when possible (e.g.,

on the right, the stemmed version of important is import)

e from nltk.stem import PorterStemmer,
WordNetLemmatizer

[machine, learning,
important]

l

[machin, learn,
import]

multiplications
multiplication

multiplicatively\ \

multiplicativity —— multiplicative — multiplicate

multiplicably — multiplicable
multiples — multiple

multiplied \ /

multipliers — multiplier —, multiply
multiplies
multiplying

multipliably —— multipliable

natural language processing

 What we have been studying are specific methods in
natural language processing, or NLP

 NLP is concerned with how to automatically analyze
large corpuses of text

Al

ML

e Two main classes of NLP: rules-based and statistical
DL

o tf-idf is a simple (yet widely used) statistical technique

Deep learning

e Today’s innovations are largely in the statistical
category, leveraging machine learning

* Key is building knowledge representations

natural language processing

e Some common functions of NLP

 Machine translation: Translating between
languages (e.g., Google translate)

Natural
Language
Processing

 Speech recognition: Determine the textual
representation of an audio track (e.g., Siri)

 Document summarization: Determine an
effective summary of a document (e.g., Watson)

* All of these are constantly being innovated with
new NLP algorithms

