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ABSTRACT
Adaptive online courses are designed to automatically customize
material for different users, typically based on data captured dur-
ing the course. Assessing the quality of these adaptive courses,
however, can be difficult. Traditional assessment methods for (ma-
chine) learning algorithms, such as comparison against a ground
truth, are often unavailable due to education’s unique goal of affect-
ing both internal user knowledge, which cannot be directly mea-
sured, as well as external, measurable performance. Traditional
metrics for education like quiz scores, on the other hand, do not
necessarily capture the adaptive course’s ability to present the right
material to different users. In this work, we present a mathematical
framework for developing scalable, efficiently computable metrics
for these courses that can be used by instructors to gauge the effi-
cacy of the adaptation and their course content. Our metric frame-
work takes as input a set of quantities describing user activities in
the course, and balances definitions of user consistency and over-
all efficacy as inferred by the quantity distributions. We support
the metric definitions by comparing the results of a comprehensive
statistical analysis with a sample metric evaluation on a dataset of
roughly 5,000 users from an online chess platform. In doing so, we
find that our metrics yield important insights about the course that
are embedded in the larger statistical analysis, as well as additional
insights into student drop-off rates.

1. INTRODUCTION
Online learning has become a popular way for universities, corpo-
rations, and other institutions to offer full classes and certification
programs at scale to students outside the traditional campus set-
ting. Yet students in these courses, particularly in those with open
enrollment such as Massive Open Online Courses (MOOCs), often
exhibit a wide range of backgrounds, degrees of preparedness, and
goals. For example, while some may wish to indulge a personal
interest, others may wish to refresh their memory of the course ma-
terial in preparation for a job [11].

Adaptive online courses automatically individualize the content pre-
sented to users, and thus hold promise of accommodating student

heterogeneity at scale [4]. These course delivery systems may lever-
age a wide array of measurements to personalize material, such as
user performance on assessments and user behavior exhibited while
interacting with content and in discussion forums [4]. Both of these
forms of data – behavioral and performance – have been shown to
be predictive of learning outcomes [2, 6], indicating that they con-
tain information about whether a user’s goals have been met. Fully
analyzing the different types of user behavior and performance in
a course, however, may prove to be overwhelming to an instruc-
tor, and may require significant knowledge of statistics in order to
properly interpret the analysis.

Thus, it is useful to develop summary metrics that break down in-
sights from user data into a few easily understandable statistics,
particularly for large-scale online courses. Such metrics may also
allow direct comparisons of the effectiveness of different courses,
or of different units within a course. In this work, we propose
a mathematical framework and guidelines for such metrics, and
demonstrate particular versions of them on a MOOC dataset.

1.1 Research Challenges and Metric Require-
ments

Education influences both (i) externally observable activity dur-
ing a course (e.g., performance on quizzes) and (ii) internal user
states during and after a course (e.g., knowledge transfer from the
course to the workplace) [12]. Any metrics for online (or offline)
course efficacy should account for changes in both, but internal
changes cannot be observed directly and are often approximated
by responses to quiz questions, which are themselves external. For
this reason, it is nearly impossible to define a single “ground truth”
measure of course quality through conventional learning measure-
ments [24]. Online courses can compensate for this difficulty by
collecting many different types of user data, including both user
performance as well as user behavioral measurements, which can
give a rich picture of how users benefit from the content. At the
same time, integrating insights from heterogeneous sources of learn-
ing data is itself a challenging task [2].

Adaptive online courses add a further challenge beyond heteroge-
neous data: unlike non-adaptive courses, they are designed to offer
users a consistent experience. A course evaluation criterion must
then account for not only overall course efficacy, but also its con-
sistency across users: such consistency encapsulates how well the
adaptation can account for different users and helps to ensure ro-
bustness to new, possibly different users joining the system [9]. We
therefore identify the following three research challenges:



C1. Incorporating heterogeneous user data: There are at least
three types of user data: (i) behavioral, e.g., clickstream measure-
ments on course content, (ii) performance, both within and external
to the course, and (iii) navigation, measuring how closely users fol-
low their adaptation path. A metric should be able to combine all or
only a subset of this data, and/or other sources, depending on what
data is available.

Each of these three measurement types can provide different in-
sights into course efficacy. For instance, some users may obtain
high quiz performance while spending a minimal amount of time
engaging with the content. This would indicate “success” if a user
simply wished to master the course material, but “failure” if he/she
also wanted to be intellectually challenged [4]. The navigation data
could shed light on this distinction: those who deviate from the
recommended path are probably searching for additional material,
while those following it are satisfied with the content provided [2].
By combining different types of user measurements, a metric can
account for the fact that a low score in one type may not necessarily
indicate an ineffective course.

C2. Balancing user consistency with efficacy: Both adaptive and
non-adaptive online courses can be evaluated with the user mea-
surements. In either case, high performance may indicate that the
course was effective. However, the multiple paths through the ma-
terial in the case of an adaptive course should also ensure a consis-
tent user experience [4]; high-performing users do not necessarily
indicate that the adaptation mechanism succeeded. A metric must
thus incorporate consistency as well as an efficacy score.

C3. Online computations: Users generally take weeks or months
to complete an online course, which can result in long evaluation
cycles if the metric value can only be computed once the course
has ended (e.g., with A/B testing or surveys). A metric that can
be computed efficiently and regularly updated as users progress
through the course is desirable. This online capability would al-
low instructors to receive feedback as the course progresses, giving
them a better opportunity to address weaknesses revealed before
the course completes.

1.2 Our Contributions
In this work, we formulate a mathematical framework for metrics
that address challenges C1-C3. Our framework takes as input a
set of user characteristics derived from observed data of an online
course, and we quantify several example characteristics (e.g., path
deviation, engagement). To demonstrate our solution, we leverage
data from a course that we hosted for Velocity Chess, a popular
online chess competition platform that teaches users techniques for
playing the game. With this dataset, we compare a comprehensive
statistical analysis of the course data with an instance of our metric,
and show that the metric provides insights that are difficult to glean
from the analysis alone.

More specifically, our work answers the following questions:

(i) How to define metrics that addresses the three challenges? We
begin in the next section by presenting our metric framework. To
address C2, it includes statistical factors for (i) the consistency of
learning characteristics over different users and course units, and
(ii) the overall efficacy of the course as indicated by the actual char-
acteristic values. In doing so, to address C1, we account for the fact
that different quantities may have different relationships with effi-
cacy; for example, while efficacy is generally linear in quiz perfor-

mance, i.e., higher performance is a positive indicator, the relation-
ship with time spent is concave, i.e., excessively high time spent
indicates confusion. Our metric parameters can also be flexibly
chosen to consider different subsets of the quantities, and to induce
different priorities on consistency and efficacy. Finally, given the
fine-granular timescale at which certain types of learning data are
captured, the metric can be computed at any point in the course,
addressing C3.

(ii) How to quantify characteristics to be assessed by the metrics?
After presenting the metric framework, we derive formulas for sev-
eral learning quantities that characterize user actions associated
with efficacy in a course. We consider three categories of quan-
tities in particular: behavioral (e.g., engagement and time spent on
content), performance (e.g., quiz scores and knowledge transfer),
and navigation (e.g., deviation from recommendations). While the
exact formulas we present for these quantities are specific to the
data capture formats of our system, they are readily extensible to
other collection mechanisms and content formats too. In perform-
ing a statistical analysis of our dataset in terms of these quantities,
we observe that (i) while behavior and performance tend to increase
throughout the course, they exhibit high variance in different units,
and (ii) little correlation exists between most quantities. (i) and (ii)
indicate potential room for improvement in terms of efficacy and
consistency, respectively.

(iii) How do the insights of the metrics compare to those revealed
through full statistical analyses? We then evaluate an instance of
our metrics on this dataset, and compare the findings to those of the
more comprehensive statistical analysis. Our metric shows that (i)
50% of the users attain less than 16% of the maximum observed
metric value, and (ii) a considerable number of users are highly en-
gaged in the course, but performance tends to be low. Both insights
are consistent with the findings from the statistical analysis. Addi-
tionally, we find that the metric output contains more insight into
learner attrition rates than do other course quantities. Overall, we
find that our metric can successfully quantify course consistency
and effectiveness, giving instructors straightforward statistics that
allow them to improve future versions of the course.

We finally review related work on metrics for online courses and
recommendation platforms more generally, and then discuss im-
plications and extensions of the work before concluding the pa-
per. In particular, though our metric is designed for adaptive online
courses, it is applicable to any personalized recommender system
in which multiple signals can give insight into efficacy.

2. OUR COURSE METRIC FRAMEWORK
In this section, we present our metric framework for evaluating
adaptive online courses. We first formalize the general architecture
of adaptive courses and then specify the combination of consistency
and efficacy mathematically.

2.1 Course Architecture and Metric Input
We assume that any adaptive course is organized into a set of units
U , with u ∈ U denoting a particular unit u. Within each u there
can be one or more content files that a user is expected to study,
e.g., videos or PDF documents. At the end of u, there may be an
assessment quiz consisting of a series of questions. We assume that
the course captures user behavior while interacting with the content
in u as well as user performance on the corresponding quiz.

Generally speaking, the adaptation logic of the course will recom-



mend for each user a sequence of units Ur = (ur(1), ...,ur(tr)) to
visit, with ur(i)∈U denoting the one recommended at time i. This
may be different than the actual chronology Ua = (ua(1), ...,ua(ta))
of the units that the user chooses to visit. The determination of
ur(i) may in general be based on analysis of the user’s actions in
ua(1), ...,ua(i−1), including but not limited to their behaviors from
interacting with the content, their performance on the quizzes, and
potentially sources of data external to the course that are available
to the system. Note that certain units may appear multiple times in
Ur or Ua, as users may or may be recommended to repeat/revisit
one or more units.

2.1.1 Quantities Q
Our metric takes as input a set of characteristics regarding users
in the course to be jointly assessed, which we refer to as the set
of quantities Q. Each quantity q ∈ Q can belong to one of at least
three categories: behavioral, performance, or navigation, with the
latter involving differences between Ua and Ur. The instructor can
choose (i) which characteristics are to be used as quantities in Q,
and (ii) whether each q is for a particular unit u or across all units
in the course. For instance, Q could be just time spent Tu in a single
unit u, or Q = {T1,T2, ...,g1,g2, ...} could be the time spent Tu and
assessment grades gu over all units u in the course.

In this way, the quantities are representative of the (heterogeneous)
user feedback to be analyzed by the metric. We discuss the defini-
tion of particular quantities for our dataset and data capture system
in the next section.

2.2 Distribution-based Metric Framework
The metric framework must use the quantities to determine course
consistency and efficacy.

2.2.1 Quantifying Consistency
We incorporate a measure of consistency through the distribution
of the quantities Q over users. We construct this distribution over
a discretized set of possible quantity combinations, i.e., all feasible
combinations of quantities that users could exhibit.

Formally, let X denote the support of the distribution, i.e., the set
of feasible outcomes (note that our empirical samples may cover
only a subset of the theoretically feasible outcomes). Further, let
x = (x1,x2, ...,x|Q|) ∈X be a particular point in the support, with
xq being the value of quantity q at this point. The empirical cumu-
lative distribution function (CDF) FQ(x) over the set of quantities Q
is then obtained as FQ(x) = 1

|X | ∑y∈X 1{yq ≤ xq ∀q} along with
the associated probability distribution function fQ(x). Here, 1 is
the indicator function, and since fQ(x) is defined over a finite sup-
port we have ∑x∈X fQ(x) = 1.

We wish for the consistency measure to be maximized when the
distribution fQ(x) is concentrated at a single point. To this end, we
define the consistency measure

Mc
Q(X ) = ∑

x∈X
h
(

fQ(x)
)

where h is a differentiable, strictly convex function on [0,1] with
h(0) = 0 (no density at x should map to no change in the measure).
Strict convexity of h ensures that as density is distributed across
more points, the consistency Mc

Q(X ) will decrease, a property that
we prove formally in our online technical report (see Proposition
1) [7]. We could set h(x) = x2, for example.

2.2.2 Combining Efficacy and Consistency
The consistency measure Mc

Q(X ) does not carry any information
about efficacy: it can be maximized if users concentrate at any
point x ∈ X , regardless of how effective the course is for users
at that point. Our metric framework must also incorporate the ac-
tual quantity values xq. To do this, we modify Mc

Q(X ) by scaling
the h( fQ(x)) by a function of the observed xq:

Ms
Q(X ) = ∑

x∈X
∑

q∈Q
zq(xq)h

(
fQ(x)

)
(1)

We suppose that zq(xq) ≥ 0 for each x ∈X . Different choices of
the function zq can then put greater or lesser emphasis on consis-
tency over quantity monotonicity.

Choosing zq. For a given distribution fQ(x), Ms
Q is monotonically

increasing in zq(xq) for each xq. While different values of x for a
given individual user would change the estimated distribution fQ,
we suppose that there are sufficiently many users that these changes
are small and do not affect Ms

Q’s overall monotonicity. The function
zq must therefore be chosen separately for each quantity q to map
more effective xq to a higher z(xq).

For quantities that are monotonically related to course effective-
ness, e.g., quiz performance, we can take zq(x) = x. Most of the
quantities q we consider in this work fall into this category, but two
of them do not. The first is time spent: a course is ineffective for
users who spend an excessively short or long amount of time on
it [1,2]. The second is deviation from the adaptive course’s recom-
mended path: some deviation from the recommended path can be
helpful, particularly to review additional content, but an excessive
amount indicates the adaptation is not meeting users’ needs. Thus,
if q represents either of these quantities, we should take zq to be a
function that initially increases with xq and then decreases, e.g., a
gamma function.

The zq must also have a component to adjust how much we wish
to emphasize consistency compared to monotonicity. For instance,
if we define zq(xq) = (1+ xq)

α for the parameter α ∈ [0,∞), then
at α = 0 we would only consider consistency (zq = 1). As α → ∞,
the zq term in Ms

Q would dominate the h( fQ) term, and a larger
concentration of users at a more effective point x ∈X would re-
sult in a larger marginal increase in Ms

Q, when compared with the
increase at a smaller value of α . Thus, for larger values of α , the
metric would attain a greater value if a few users have a very posi-
tive experience, compared to if all users have a consistent, moder-
ately positive experience. We formally quantify this insight in our
online technical report (see Proposition 2) [7] by considering, for
each value of α , the set of quantity values x for which a consistent
experience concentrated at x yields a higher metric value than an
inconsistent, uniform distribution of user characteristics over the
entire set of feasible quantity values X .

3. DERIVING QUANTITIES FROM DATA
In this section, we derive several specific quantities from learning
data that can form the set Q in our metric framework. We do so
based on data formats from our course delivery system, consider-
ing the case of an adaptive online course we hosted for Velocity
Chess, an open chess competition website. We will categorize user
activities into three main quantity types: navigation, behavioral,
and performance.

While formulating the quantities, we also perform a comprehen-



Figure 1: The course consists of seven units: a welcome unit (unit 0), the diagnostic test (unit 1), four core units (units 2-5), and a completion
page (unit 6). The adaptation logic is also indicated in the diagram. The percentages indicate the fraction of times that recommendation was
made, e.g., in unit 3, a user will answer the quiz and be recommended to advance to unit 4 57% of the time (as opposed to failing the quiz or
dropping off before finishing the quiz).

sive statistical analysis of the dataset. In doing so, we make three
main findings: (i) many users deviate significantly from their rec-
ommended paths, (ii) there is high variability in user behavior and
performance, and (iii) user activity and performance tend to in-
crease later in the course. In the next section, we will see that our
metric framework also reveals these insights.

Statistical tests. In certain cases, we will run statistical tests to
compare distributions of quantities so as to derive qualitative in-
sights into the course efficacy. For these, we will report the p-value
(p) and the corresponding test – Wilcoxon Rank Sum (WRS), F-
test of Variance, or Pearson correlation [21] – in the description.

3.1 Course Structure and Data Capture
The course we analyze teaches users the Pins strategy for playing
chess, from beginner to advanced levels, individualizing the ma-
terial based on the user’s inferred level. It was open to all site
users starting in December 2015; we consider the data collected
over the one-year time period from December 2015 to 2016, com-
prising 4,877 enrolled users.

The course architecture and adaptation logic are defined in Fig-
ure 1. The content is divided into six units u = 0, ...,6. The core
material of the course is contained in Units 2-5, which are of in-
creasing difficulty. Each of these “core units” is comprised of a
series of slides and ends with a quiz; after completing the quiz, the
course’s adaptation logic directs users to a new unit based on their
quiz performance. For instance, an average performer may be rec-
ommended to proceed to the next unit, but a user who failed the
quiz may be asked to repeat that unit. Unit 1 is a diagnostic test
that all users take, based on the results of which the adaptation will
recommend a core unit to start at.

Clickstream event capture. Each slide in the course is either
video-based or text-based. For video slides, the user has a scroll
bar to navigate the video, and all playback events are captured by
the system; these consist of pause, play, scrub (either forward or
backward), and replay (i.e., starting the slide over), together with
the position of the video at which the event occurs. For text slides,
there is a single playback event when the user accesses it. In both

cases, a slide change event is generated when the user moves to a
new slide. Slide IDs and UNIX timestamps of all events are also
recorded; the IDs include both the previous (immediately before
event) and next (immediately after) slides, which differ for change
events.

The system also records user navigation events independent of par-
ticular units: unit enter and exit, course login and logout, and
application foreground (fgnd) and background (bgnd), i.e.,
when the application is the current active tab on the user’s com-
puter. Using these events, we are able to infer a user’s navigation
between units and their behavior within units. For their quiz perfor-
mance, we use the response events that the system collects after a
user answers a question, indicating whether the answer was correct
or not.

3.2 Quantifying User Navigation
We first investigate user progression through the course units, and
use that to define a navigation quantity. Recall that while the sys-
tem itself generates an adaptation path Ur for each user, the user’s
chosen path Ua may deviate from the system recommendation. We
count a unit as “visited” in Ua if the user spent at least 5 seconds
on the material in the unit; time spent on the unit’s material is itself
a quantity defined in later sections.

Unit-to-unit transitions. 2,186 out of 4,877 users entered the di-
agnostic test (unit 1) from the introduction (unit 0). For subse-
quent units, the percentages in Figure 1 summarize the users’ rec-
ommended paths Ur:

Skill branching: Of the 1,310 users who completed the diagnos-
tic test, the majority (68%) were placed either at the most begin-
ner or the most advanced level. This heterogeneity is common in
MOOCs.

Repeating vs. advancing: When placed in core unit u, the frac-
tion recommended to advance to u+ 1 as the next step increased
in u (40% to 70%). As users get further through the course, they
are more motivated to finish (25% of those who accessed the di-
agnostic test ended up finishing). Interestingly, very few users are



(a) User navigation. (b) System recommendation. (c) Difference (a)−(b). (d) Distance CDF.

Figure 2: Comparison between (a) user navigation and (b) recommended navigation between units. A point ( j, i) in the diagram is the
fraction of times unit j was selected while starting on unit i. (c) gives the difference in fractions, illustrating a strong deviation between actual
and recommended transitions between units. This is supported by (d) the empirical CDF of the Levenshtein distance d between actual and
recommended sequences.

recommended to repeat the core units (less than 3.7% in each case).
The remaining users dropped out; we will investigate drop-off fur-
ther in the next section.

Figures 2a-c show the discrepancies in unit-to-unit transitions be-
tween user behavior Ua (a) and system recommendations Ur (b),
with the difference between the fractions plotted in (c). In the core
units, the vast majority of recommendations are to advance from u
to u+1, as discussed above. Users’ actual paths, on the other hand,
are more diverse: there are visibly more repetitions than the system
recommends, and also occasional skips back to prior units. Thus,
many users likely feel the need for more course content review than
is recommended.

Path deviation quantity. We quantify navigation as users’ devia-
tion from their recommended paths through the course. To do this,
recall the notation Ur =(ur(1), ...,ur(tr)) and Ua =(ua(1), ...,ua(ta)).
For this course, we always have ta ≥ tr because navigation can only
add steps to the recommended path; users cannot skip units unless
recommended. From this, we define the path deviation quantity

d =
1
|Ua|

v(Ua,Ur)

where v(·) is the Levenshtein (edit) distance between the two se-
quences [26]. We choose Levenshtein rather than other distance
metrics, e.g., longest common subsequence, because it allows for
insertion, deletion, and substitution operations in between strings.
In our application, insertion captures users adding additional revis-
ing units into Ua from Ur, and substitution captures them choosing
to visit different units than those recommended. Division by |Ua|
ensures that d ∈ [0,1).

Figure 2d gives the cumulative distribution function (CDF) of the
quantity d over users in the dataset.1 The mean deviation is 0.36,
which can be interpreted as user paths being 36% different from
the recommendations on average. On the one extreme, about 22%
of users follow the recommendations exactly (i.e., d = 0), while on
the other hand, 25% of users deviate by 56% or more.

3.3 Quantifying User Behavior
We derive three quantities of user behavior within units: time spent,
completion rate, and engagement.

1In this plot, we only consider users with |Ua|> 2, i.e., those who
proceeded past the diagnostic test.

3.3.1 Defining Behavioral Quantities
Let E = (e1, ...,en) be the sequence of n clickstream events gen-
erated by a user in the course. For each event ek, let s(ek) denote
its next slide ID, i.e., the ID immediately after. We write s ∈ Su to
denote that slide s appears in unit u.

Time spent. Let t(ek) be the timestamp of event ek. The time
registered for the interval between ek and ek+1 is:

Tk =

{
min(t(ek+1)− t(ek), τ) , if ek 6= bgnd

0, otherwise

In other words, we do not consider time intervals for which the
app is in the background, and set the parameter τ = 600 seconds
to upper bound the time between actions, capping excessively long
intervals when the user likely walked away. From these intervals,
the time spent on slide s, Ts, and the time in unit u, Tu, are

Ts = ∑
k: s(ek)=s

Tk, Tu = ∑
s∈Su

Ts,

since s(ek) = s implies that Tk is time spent on s.

Completion rate. Completion of slide s is a binary measure, de-
fined as Rs = 1 if Ts ≥ ε and 0 otherwise. We set ε = 5 sec so that
if the user spent at least 5 seconds on s it is considered completed.
From this, the completion rate of unit u is defined as

Ru =
1
|Su| ∑

s∈Su

Rs,

where |Su| is the number of slides in u. Note that Ru is between 0
(no slides completed) and 1 (all completed).

Engagement. Let T̄s be the “expected” time spent on slide s. Fol-
lowing the method proposed in [6], we calculate the engagement of
a user on unit u as

eu = min

(
γ×Ru×∏

s∈Su

(
1+Ts/T̄s

2

)α

, 1

)
.

Here, α ≥ 0 models the diminishing marginal return on time spent,
i.e., more time spent on the same slide counts incrementally less
towards engagement. The division by 2 makes the computation
relative to a user who spends the expected Ts = T̄s on each slide.
γ ∈ (0,1] is a constant that controls the overall spread of the dis-
tribution; a user who registers the expected time spent and 100%



(a) Time spent Tu (b) Completion rate Ru (c) Engagement eu

(d) Time spent Tu (repeating) (e) Completion rate Ru (repeating) (f) Engagement eu (repeating)

Figure 3: Distributions of time spent, completion rate, and engagement across units in our dataset. Each quantity is considered both (i) for
all user visits to a unit in a-c and (ii) for all visits past the first one (i.e., repeating) in d-f. The core units 2-5 each exhibit significant variation
in user behavior.

completion on each slide will have eu = γ . By default, we set γ = 1,
α = 0.1, and T̄s = 60 sec.2

All three behavioral quantities – time spent Tu, completion rate Ru,
and engagement eu – have been defined here on a per-unit basis.
We also consider them at a course level to get a complete picture of
overall behavior. For these details, see online technical report [7].

3.3.2 Behavioral Analysis
Figure 3 gives boxplots of the three behavioral quantities in our
dataset, across units. For each quantity, we show behavior over all
user visits to units, as well as repeating visits only.

We first observe that behavior in the core units exhibits high varia-
tion in each of the quantities. The interquartile ranges (IQR) of Ru
and eu are between 0.75 and 0.90, out of a maximum range of 1.0.
The ratio of the IQR to the median – a non-parametric coefficient
of variation [21] – is larger than 1.2 in each case, up to 4.6 for time
spent in unit 4. The IQRs for time spent are up to 275 sec.

Also, user activity tends to increase in later core units (WRS p ≤
0.033). While time spent (Tu) is reasonably consistent in units 2
to 5 – with medians around 60 sec – completion rate (Ru) and en-
gagement (eu) both increase considerably from units 3 to 5. In
particular, the median Ru rises from 0.42 to 0.63 and the median
eu increases from 0.43 to 0.71. The WRS p-values associated with
these changes are significant (p ≤ 0.033) in each case. Combined
with the consistent values of Tu, this implies that users are distribut-
ing their time more evenly across slides in later units. This is some-
what surprising because the later material is more challenging, so
we would expect certain slides to require more time.

For repetitions, the median tu drops by < 25 seconds, while Ru
and eu drop more substantially, from 0.17 to 0.39 depending on
the unit. The small drops in time spent indicate that users spend a
significant amount of time repeating. Coupled with large declines
in completion rate, this implies that overall, users are focusing on

21 minute is the approximate median of time spent on each slide in
the dataset.

a more specific set of slides while repeating. Large variations in
behavior, however, remain: the third quartiles of Ru and eu barely
move at all.

3.4 Quantifying User Performance
We derive two quantities for user performance: quiz performance
and earned virtual currency (called vChips).

3.4.1 Defining Performance Quantities
Quiz performance. Let Nu = {n1,n2, ...} denote the set of ques-
tions in the question bank for unit u. Upon a user’s lth visit to the
quiz for u, they will be given a random subset N l

u ⊂Nu of these
questions to answer. The number of points earned on the lth visit
to u is calculated as pl

u = ∑q pl
q, where pl

q = 1 if the user answered
question q correctly on the lth attempt, and 0 otherwise. The total
points earned on u is then pu = ∑l pl

u, and the total points earned in
the course is pc = ∑u pu. From this, the user’s quiz grade on u, gu,
and grade in the course, gc, are

gu = pu/Nu, gc = pc/Nc,

where Nu = ∑l |N l
u | is the total number of questions answered by

user in unit u, and Nc = ∑u Nu is the total number given to the
user in the course. In this way, gu and gc are between 0 (no points
received) and 1 (all questions answered correctly). Note that, due
to question randomization and course adaptivity, N l

u , Nu, and Nc
will vary for each user.

vChips. Velocity Chess awards users vChips3 – a form of virtual
currency – based on their activity and performance on the site. The
vChips can be obtained by winning chess games, winning prizes in
tournaments, finishing daily challenges, and correctly solving chess
puzzles. They can thus measure players’ chess skill in practice.

3.4.2 Performance Analysis
Figure 4 gives the distributions of the performance quantities gu,
gc, and vChips. Boxplots of gu are shown in (a) for each unit that
has a quiz, while CDFs of gc and vChips are given in (b) and (c).

3https://www.velocitychess.com/faq

https://www.velocitychess.com/faq


(a) Unit quiz performance gu (b) Course quiz performance gc (c) vChips

Figure 4: Distributions of quiz grades across units, quiz grades across the course, and vChips for users in our dataset. Quiz performance
improves in later units, exhibiting significant variation throughout, though less-so than the behaviors in Figure 3. The vChips have a high
concentration around 1,000 chips.

Just as user activity increased in later units, we find that user quiz
scores increase further into the course (WRS p≤ 0.026). The me-
dian grade in (a) rises monotonically from 0.78 in unit 1 to 0.9 in
unit 5. Despite the increase in difficulty, the users reaching later
units are likely more knowledgeable and can thus perform better.

We also find that users’ performance is less variable than their
behavior (F-test p ≤ 5.19× 10−3 with the exception of Tu): the
IQRs for unit grades gu range from 0.20 to 0.44, with correspond-
ing IQR-to-median ratios between 0.22 and 0.57. These ratios are
smaller than those observed in Figure 3. The vChips have even less
variation: with a median of 1,000 and an IQR of 75 chips, the ratio
is only 0.075. The vChips have a heavy tail as well, with the mean
being 3,271.

3.5 Quantity Correlations
The above analysis indicates that there is high variability in users’
behavior and performance quantities unit-by-unit as well as in their
vChips and path deviation quantities over the full course. Taken
alone, however, any one of these quantities fails to capture the di-
versity of users taking open online courses. Since our metric frame-
work in Section 2 seeks to aggregate them into an overall measure
of efficacy, we also considered the correlation between the dif-
ferent quantities, both between quantities of the same type (Sec.
3.5.1) and between those of different types (Sec. 3.5.2). Overall,
we found that most of the quantities exhibit little correlation, i.e.,
each provides unique information on the diversity of users taking
open online courses [11]. In this section, we will present the most
interesting of these findings; for the full set of scatterplots and cor-
responding statistical analysis, see our technical report [7].

Normalizing behavioral quantities. To perform this correlation
analysis, we consider each user’s quantity values at the course level.
To translate the three per-unit behavioral quantities – time spent Tu,
completion rate Ru, and engagement eu – to per-course, we sum all
of these quantities over all units of the course for each user,4 and
then normalize over the number of units visited. For completeness,
we also considered the number of units suggested by the adapta-
tion algorithm. Formally, let U ′a ⊆ Ua be the set of unique units
visited by a user, and U ′r ⊆ Ur be the set of units recommended.
The normalized quantities are defined as

xa
c =

1
|U ′a|

∑
u

xu, xr
c =

1
|U ′r |

∑
u

xu,

where xu denotes the quantity (Tu, Ru, or eu) for unit u, as defined
in Section 3. The normalization for xa

c ensures that the Rc and ec
quantities still lie in [0,1]. xr

c, on the other hand, will become larger
than xa

c when a user takes the initiative of visiting units that were
not recommended, i.e., that they could have skipped.

4Given the variability between units observed in Section 3, we con-

3.5.1 Correlations within Quantity Types
Figure 5 plots the course-level behavioral quantities against one an-
other, normalizing by actual path (xa

c ). We see immediately in Fig-
ure 5(a) that there is not a strong relationship between time spent
Tc and completion rate Rc, with a Pearson correlation coefficient
r < 0.4. Those with completion of 100%, in fact, have the highest
variation in time spent, perhaps due to them viewing more slides:
users’ variation in the time spent on each slide would then accumu-
late over more slides, leading to higher overall variability.

Figure 5(b), on the other hand, shows a strong positive correlation
between completion rate and engagement ec, with r > 0.95. This
is expected since engagement is defined to be linear in Ru. Specifi-
cally, several users have moderate ec and high Rc: they would have
low Tc to pull the engagement level down. Figure 5 shows a posi-
tive correlation between ec and Tc as well, though not as strong, and
we can see cases where a low time spent corresponds to a moderate
engagement value. Overall, we conclude that though engagement
is a combination of completion rate and time spent, each of the
three quantities gives important information on user behavior.

As for the performance quantities, Figure 6 gives a scatterplot of
quiz score gc against vChips. We see that vChips and quiz scores
are only weakly positively correlated. The positive association is
intuitive, because we would expect those answering the questions
correctly to be more skilled in chess and thus to have the potential
to win more games. On the other hand, the lack of strength is sur-
prising. There are many uncontrolled factors outside of the course
that could affect this, though, such as whether the strategy taught
in the course (pins) is useful in a given situation.

3.5.2 Correlations Between Quantity Types
From analysis between quantity types, our key finding is that the
only significant correlation is a positive one between engagement
and quiz score, while the rest of the pairs – distance vs. engage-
ment, vChips vs. time spent, and so on – only have minor asso-
ciations, if any. This can be seen in Figure 7, which gives scat-
terplots of selected pairs – vChip and engagement in (a), quiz and
engagement in (b), and quiz and distance d in (c) – with behav-
iors normalized by recommended path (xr

c). The scatterplot in (b)
has a correlation coefficient of r > 0.75, meaning that users who
complete more slides and/or spend more time on each slide tend to
have improved quiz scores. Figure 7(a), on the other hand, shows
that users’ vChips are only weakly positively correlated with their
behavior: users with higher engagement do tend to have slightly
more vChips, but there are still many instances of low engagement
users earning among the most vChips (potentially those with prior
knowledge of the pins tactic) and users with high time spent earning
the least vChips (potentially those who struggle with the course).

sider per-unit, per-user quantities in Section 2.



(a) Time spent and completion (r = 0.395) (b) Completion and engagement (r = 0.959) (c) Engagement and time spent (r = 0.490)

Figure 5: Scatterplots of the behavioral quantities, normalized by the number of units visited (i.e., xa
c ). The correlation between completion

and engagement is strong, but weaker for the other two pairs.

Figure 6: Scatterplot between the performance quantities, vChips
and quiz score gc. There is not a strong correlation between them
(r = 0.138).

We also found a weak negative correlation between distance and
the behavioral and performance quantities; the case of distance and
quiz score is plotted in Figure 7(c). Users who followed the adap-
tation algorithm’s recommendations, then, have a mild tendency to
be more engaged, spend more time, and obtain higher grades than
those who deviate from the recommendations. On the other hand,
a greater deviation can still lead to lower course activity and grades
for some users, and there are different users over the full range of
possible completion rates, engagement, and time spent that cover
the full range of possible distances. This emphasizes again that the
navigation quantity conveys different information than the perfor-
mance and behavioral quantities.

4. METRIC EVALUATION
The statistical analysis in the previous section revealed that while
activity and performance tend to increase further in the course,
there is high variability in the quantities overall, and thus room
for improvement in consistency and efficacy. In this section, we
first perform an evaluation of the course using our proposed metric
framework, and show that it also leads to these conclusions. We
then consider course drop-off rates, and find that our metric yields
better insight into this than do the quantities.

4.1 Course Consistency and Efficacy
Before presenting the results, we first specify particular inputs and
parameters of Ms

Q in (1), as well as a sampling procedure to aid in
the quantity distribution estimation.

Input quantities Q. The input to Ms
Q is user data on a set of quan-

tities Q. Based on the definitions in the previous section, the full
set of quantities Q takes each quantity at the unit-level except dis-
tance d and vChips which are only defined over the entire course,
i.e., Q = {{eu,Ru,Tu,gu ∀u},d,vChip}. We also consider different
subsets of Q in our evaluation, e.g., behavior quantities only.

Functions zq and h. Ms
Q requires zq(x) and h(x) for efficacy and

consistency. For all metric variations, we take h(x) = x2. We use
zq(x) = x when q is an engagement eu, completion rate Ru, perfor-
mance gu, or vChip quantity, as higher values of these quantities
generally indicate a more effective course. We use the gamma dis-
tribution zq(x) = 1

Γ(k)θ k xke−
x
θ for the distance d and time spent Tu

quantities, reflecting the non-monotonic relationship of these quan-
tities with the course efficacy. We choose θ and k as the squared
root of the median value of each quantity, so that gq attains its max-
imum value at the median.

Sampling for fQ(x). To estimate the distribution fQ(x) of possible
metric values, we first perform random sampling on the realized
values of Q to better estimate the properties of the metric output.
Similar to bootstrapping [8], for q ∈ Q we uniformly at random
sample non-zero quantity values x ∈ xq for each of the users. We
take only nonzero values since zero quantity values correspond to
inactive users, who may have dropped out of the course or skipped
that unit. We take 100 different samples, and combine each with the
original dataset to estimate the distribution fQ and in turn calculate
the metric values Ms

Q.

4.1.1 Results and Discussion
Our evaluation results of Ms

Q for the full quantity set as well as
subsets are given in Figure 8. Each circle in each distribution plot
of Figure 8 represents the metric value from one sample. These
plots are the subject of the following discussion.

All quantities. We first consider the metric values over all units and
quantities Q. Figure 8a shows the distributions for Ms

Q across sam-
ples. We see that many (roughly 50%) of the samplings yield fairly
low metric values that are < 1. Considering that roughly 20% of
the samples have an output of 6 or higher, meaning that a majority
of cases yield less than 17% of the maximum value, this indicates
room for improvement in terms of overall efficacy and consistency,
as we concluded from the statistical analysis. Other samples show
clear concentrations around 4 and 6, perhaps due to different quan-
tities concentrating at these values. We also further analyzed the
metric in terms of its two constituent pieces – actual quantity values
and user consistency – to see whether one had a larger bearing on
these low metric values. In doing so, we found that both contribute
to low values, confirming room for improvement in both areas; for
the corresponding plots, see our online technical report [7].

Behavioral vs. performance quantities. We next compare the
metric outputs for the behavior and performance quantities only, in
Figures 8b and 8c respectively. Since these quantities reflect differ-
ent aspects of user activities, we would expect their metric distri-
butions to differ, and we see that this is indeed the case. Also, we



(a) vChip and engagement (r = 0.129) (b) Quiz and engagement (r = 0.758) (c) Distance and quiz (r =−0.131)

Figure 7: Scatterplots between selected quantities, with the Pearson correlation coefficient (r) reported for each. Behaviors are normalized
by the recommended path (xr

c). Most of the pairs of quantities exhibit little correlation.

(a) All quantities. (b) Behavioral quantities. (c) Performance quantities. (d) Unit-by-unit quantities.

Figure 8: Distributions of the metric values for 100 different samples. Each circle represents one sample of possible values of Q. (a) is
the CDF of Ms

Q considering all quantities. (b) and (c) are the distributions of the metric considering behavioral and performance quantities
separately. (d) are distributions of metric values Ms

Q (1) for each unit, in which Q is taken to be each individual quantity. The distributions
have a consistent shape for each unit, with over 80% of users experiencing low metric values.

observe that the metric values are more varied for behavior than
they are for performance, which is consistent with our finding of
high variability in behavioral quantities from the statistical analy-
sis. Most users’ performance metric values are low, concentrating
around 0.2, suggesting poor performance and/or little user consis-
tency. Recalling from Figure 4 that many users performed well on
quizzes, this suggests that these low metric values are likely due to
low consistency in scoring, rather than poor quiz scores. The be-
havioral metric values, on the other hand, suggest high behavioral
quantities and/or high consistency in behavior. The high variability
we observed in Figure 3 suggests that effective behaviors contribute
to these higher values. This conclusion is consistent with the fact
that several units show 25% of users obtaining the highest possible
engagement and completion rates, whereas time spent is concen-
trated around its center.

Unit by unit quantities. To analyze differences between units, we
also compute the metric over each individual quantity for each core
unit. The results are shown in Figure 8d. We see that the distri-
butions are fairly similar for units 2 to 4, exhibiting a fairly wide
range of values in each case. As in the distributions over the full
course in Figure 8a-c, there is a large concentration of metric val-
ues around smaller values, particularly 0. However, the maximum
metric values are around 2.5, indicating that some users do have an
effective experience in certain units. Indeed, users in unit 5 tend to
have the highest values, with roughly 75% of them > 0.5. This is
consistent with the conclusion from the statistical analysis that user
activity and performance tend to increase further in the course.

Overall, these findings indicate that the course is effective at engag-
ing users (Figure 8b), but – at least based on quizzes and vChips –
there is room for improvement in teaching them how to play chess
(Figure 8c). Given the free and open nature of Velocity Chess’s
platform, many users likely took the course more out of interest in

chess and less out of a desire to memorize chess strategies, which
may explain why users’ performance is more inconsistent and less
indicative of an effective course than their behavior.

4.2 Course Drop-off
We finally validate our metric by comparing it to user drop-off
statistics. High drop-off rates are a notorious issue facing open
online courses today [3]; we saw in the statistical analysis that our
dataset does face this problem particularly in the first three units.

In Table 1, we compare three sets of values across the different
units: (i) mean values of behavioral quantities, (ii) metric calcu-
lations on the corresponding quantities, and (iii) drop-off percent-
ages, defined as the percentage of users for whom this unit was the
furthest visited. Recall that Figure 8d also illustrated the metric
values for different units, showing each unit tending to exhibit low
values, at least on average.

Overall, we find that the metrics contain better insight into drop-
off than do the behavioral quantities. Unit 1 experienced a high
drop-off while the behavioral quantities eu and Ru in Units 0 and
1 were fairly high. In particular, on average learners completed al-
most half of the content in Unit 0 and Unit 1, while almost half of
the learners never proceeded past Unit 1. Such drop-off tendencies
are difficult to observe from looking at the mean behavioral quan-
tities in Table 1. The metric functions Ms

Q, on the other hand, tell
another story; in particular, Ms

Ru
and Ms

eu
in Units 0 and 1 are low

when compared to the average values of Ru and eu. We therefore
conclude that when learners are highly likely to drop off, Ms

Tu
and

Ms
Ru

tend to signal lower quality than do Tu and Ru.

On the other hand, we see that Ms
Q and the behavioral quantities

demonstrate similar trends in the second half of the course, where
dropoffs are lower. Looking at learner behavioral quantities after



Item Unit 0 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Mean
Value

Time spent (Tu) 0.32 0.10 0.05 0.04 0.04 0.08 0.05
Engagement (eu) 61.6 46.9 9.82 7.40 8.97 10.44 15.71
Completion rate (Ru) 41.89 42.16 8.36 6.59 7.63 9.79 14.15

Metric
Value

Time spent (Ms
Tu
(X )) 0.04 0.03 0.05 0.05 0.05 0.05 0.03

Engagement (Ms
eu
(X )) 21.10 22.31 4.14 4.33 3.86 3.78 5.90

Completion rate (Ms
Ru
(X )) 4.14 15.12 4.33 4.39 4.07 4.24 5.40

Drop-off 0.4% 45.0% 14.9% 7.1% 4.0% 5.2% –

Table 1: Metric comparison with quantities and drop-off rates. The first row of the table entries gives the average learner behavioral quantities,
the second row gives the metrics Ms

Q on the corresponding behavioral quantities, and the third gives the drop-off percentages. The low metric
values in Units 0 and 1, compared with the corresponding behavioral quantity values, are consistent with these units experiencing high
drop-offs.

Unit 2, we observe that Tu, Ru, eu are generally low, as many learn-
ers fail to engage with the course content. The same trend can be
observed in the metric values. Interestingly, however, the Ms

Q do
tend to increase as the drop-off lessens from Units 3-6, even though
our metric was not designed to incorporate this explicitly.

5. RELATED WORK
Learning and content analytics. Recent research in online learn-
ing has focused on developing analytics for instructors [2]. Ma-
chine learning techniques such as collaborative filtering and prob-
abilistic graphical models have been applied to predict students’
abilities to answer questions correctly [17, 23] or their final grades
[16, 19]. Other studies have shown that student behaviors display
patterns that are significantly associated with learning outcomes
[2, 10]. User-content interactions and Social Learning Networks
(SLN) have also been used to predict student dropoffs [18, 22],
while SPARFA-Trace [13] was developed to track student concept
knowledge throughout a course. Few works, however, have studied
the efficacy of the course itself, our goal in this work.

Adaptive learning evaluation. Developing course efficacy metrics
is particularly important for the growing number of adaptive online
courses. For example, MIIC [4] and LS-Plan [14] are all adaptive
course delivery platforms that support user- or system-defined in-
dividualization across different materials. We can use our metric
to improve adaptation algorithms and user experiences. The two
most common evaluation mechanisms for adaptive online courses
are (i) A/B testing of adaptation versus control group and (ii) user
surveys. Although A/B testing [4] allows researchers to test the ef-
fect of controlled variations, it is difficult to incorporate additional
variables afterwards. Surveys can be used to supplement A/B test-
ing [25], but these rely on user recollections and also cannot be
computed at arbitrary points during the course. Our metric frame-
work, in contrast, is easily applicable to different input variables
and can be computed at any time during the course.

Online personalization metrics. Substantial amounts of research
have been poured into online personalization for applications out-
side of education, particularly on recommendation systems that
predict individual user preferences (see [5] for a survey). Tradi-
tionally, these systems have been evaluated with metrics like accu-
racy and RMSE on a holdout set. Yet these techniques have been
criticized as being too distant from the actual user experience [15].
Therefore, newer metrics aim to incorporate factors such as diver-
sity, novelty, and coverage [9,20]. Still, each of these metrics tends
to focus on the final results of the prediction without taking into
consideration users’ prior and subsequent experience with the sys-
tem. They are also difficult to apply to online courses, which aim

to change users’ internal knowledge states in ways that are not di-
rectly observable.

6. DISCUSSION AND CONCLUSION
We developed a metric framework for adaptive online courses that
quantifies both the consistency of users’ experiences in the course
and the effectiveness of the course across multiple users. To mea-
sure effectiveness, we incorporated multiple quantities that describe
the full range of user experiences, from their navigation through the
adaptive course to their performance on quizzes and external tasks
to their interaction with the course material. A statistical analy-
sis of these quantities showed little consistency between different
users’ experiences and suggested that the course adaptation may
not have been effective for many users: many users exhibited poor
performance despite spending large amounts of time on the course,
and others exhibited high performance but barely engaged with the
material. Applying specific instances of our metric to the dataset
showed that the metric contained many of the same insights as a
statistical analysis, and revealed additional findings consistent with
drop-off rates.

A full statistical analysis likely contains more insights than any sin-
gle metric can provide. Defining a unified metric framework, how-
ever, not only allows us to more compactly represent a course’s
effectiveness, it also allows for direct, quantitative comparisons be-
tween different units of a course or even different iterations of a
course. This information can then be used by an instructor to im-
prove the material, either in the current or future offerings. While
traditional A/B testing requires the instructor to vary one charac-
teristic of the course at a time – which can be inefficient and result
in an uneven course experience for different users – our approach
enables instructors to estimate the marginal benefits of different in-
terventions, allowing for more rapid and dynamic changes.

Our metric framework is not restricted to adaptive online courses:
it can accommodate different quantities that may have distinct re-
lationships to course effectiveness. Indeed, it can even be used for
other types of personalized recommendation systems in which mul-
tiple quantities can give different insights into the recommenda-
tion effectiveness. For instance, users’ ratings of a movie on Net-
flix may contrast with the time spent watching the movie, yield-
ing contradictory information for the recommendation algorithm.
Adaptive online courses are, however, perhaps more likely to ex-
hibit such contradictory information than other recommendation
settings, and online education presents other unique challenges that
require the development of new metrics. The challenges of per-
sonalization in different applications motivate the consideration of
such metrics more generally.
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