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ABSTRACT
We propose a new model for learning that relates video-
watching behavior and engagement to quiz performance. In
our model, a learner’s knowledge gain from watching a lecture
video is treated as proportional to their latent engagement
level, and the learner’s engagement is in turn dictated by a set
of behavioral features we propose that quantify the learner’s
interaction with the lecture video. A learner’s latent concept
knowledge is assumed to dictate their observed performance
on in-video quiz questions. One of the advantages of our
method for determining engagement is that it can be done
entirely within standard online learning platforms, serving
as a more universal and less invasive alternative to existing
measures of engagement that require the use of external
devices. We evaluate our method on a real-world massive
open online course (MOOC) dataset, from which we find that
it achieves high quality in terms of predicting unobserved
first-attempt quiz responses, outperforming two state-of-the-
art baseline algorithms on all metrics and dataset partitions
tested. We also find that our model enables the identification
of key behavioral features (e.g., larger numbers of pauses
and rewinds, and smaller numbers of fast forwards) that are
correlated with higher learner engagement.

Keywords
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1. INTRODUCTION
The recent and rapid development of online learning plat-
forms, coupled with advancements in machine learning, has
created an opportunity to revamp the traditional “one-size-
fits-all”approach to education. This opportunity is facilitated
by the ability of many learning platforms, such as massive
open online course (MOOC) platforms, to collect several
different types of data on learners, including their assessment
responses as well as their learning behavior [9]. The focus
of this work is on using different forms of data to model
the learning process, which can lead to effective learning
analytics and potentially improve learning efficacy.

1.1 Behavior-based learning analytics
Current approaches to learning analytics are focused mainly
on providing feedback to learners about their knowledge
states – or the level to which they have mastered given con-
cepts/topics/knowledge components – through analysis of
their responses to assessment questions [10, 24]. There are
other cognitive (e.g., engagement [17, 31], confusion [37], and

emotion [11]) as well as non-cognitive (e.g., fatigue, moti-
vation, and level of financial support [14]) factors beyond
assessment performance that are crucial to the learning pro-
cess as well. Accounting for them thus has the potential to
yield more effective learning analytics and feedback.

To date, it has been difficult to measure these factors of the
learning process. Contemporary online learning platforms,
however, have the capability to collect behavioral data that
can provide some indicators of them. This data commonly
includes learners’ usage patterns of different types of learning
resources [12, 15], their interactions with others via social
learning networks [7, 28], their clickstream and keystroke ac-
tivity logs [2, 8, 30], and sometimes other metadata including
facial expressions [35] and gaze location [6].

Recent research has attempted to use behavioral data to
augment learning analytics. [5] proposed a latent response
model to classify whether a learner is gaming an intelligent
tutoring system, for example. Several of these works have
sought to demonstrate the relationship between behavior and
performance of learners in different scenarios. In the context
of MOOCs, [22] concluded that working on more assignments
lead to better knowledge transfer than only watching videos,
[12] extracted probabilistic use cases of different types of
learning resources and showed they are predictive of certifica-
tion, [32] used discussion forum activity and topic analysis to
predict test performance, and [26] discovered that submission
activities can be used to predict final exam scores. In other
educational domains, [2] discovered that learner keystroke
activity in essay-writing sessions is indicative of essay qual-
ity, [29] identified behavior as one of the factors predicting
math test achievement, and [25] found that behavior is pre-
dictive of whether learners can provide elegant solutions to
mathematical questions.

In this work, we are interested in how behavioral data can
be used to model a learner’s engagement.

1.2 Learner engagement
Monitoring and fostering engagement is crucial to education,
yet defining it concretely remains elusive. Research has
sought to identify factors in online learning that may drive
engagement; for example, [17] showed that certain production
styles of lecture videos promote it. [20] defined disengagement
as dropping out in the middle of a video and studied the
relationship between disengagement and video content, while
[31] considered the relationship between engagement and the

Proceedings of the 10th International Conference on Educational Data Mining 64



semantic features of mathematical questions that learners
respond to. [33] studied the relationship between learners’
self-reported engagement levels in a learning session and their
facial expressions immediately following in-session quizzes,
and [34] considered how engagement is related to linguistic
features of discussion forum posts.

There are many types of engagement [3], with the type of
interest depending on the specific learning scenario. Several
approaches have been proposed for measuring and quan-
tifying different types. These approaches can be roughly
divided into two categories: device-based and activity-based.
Device-based approaches measure learner engagement using
devices external to the learning platform, such as cameras to
record facial expressions [35], eye-tracking devices to detect
mind wandering while reading text documents [6], and pupil
dilation measurements, which are claimed to be highly corre-
lated with engagement [16]. Activity-based approaches, on
the other hand, measure engagement using heuristic features
constructed from learners’ activity logs; prior work includes
using replies/upvote counts and topic analysis of discussions
[28], and manually defining different engagement levels based
on activity types found in MOOCs [4, 21].

Both of these types have their drawbacks. Device-based
approaches are far from universal in standard learning plat-
forms because they require integration with external devices.
They are also naturally invasive and carry potential privacy
risks. Activity-based approaches, on the other hand, are
not built on the same granularity of data, and tend to be
defined from heuristics that have no guarantee of correlating
with learning outcomes. It is therefore desirable to develop a
statistically principled, activity-based approach to inferring
a learner’s engagement.

1.3 Our approach and contributions
In this paper, we propose a probabilistic model for inferring a
learner’s engagement level by treating it as a latent variable
that drives the learner’s performance and is in turn driven
by the learner’s behavior. We apply our framework to a
real-world MOOC dataset consisting of clickstream actions
generated as learners watch lecture videos, and question
responses from learners answering in-video quiz questions.

We first formalize a method for quantifying a learner’s behav-
ior while watching a video as a set of nine behavioral features
that summarize the clickstream data generated (Section 2).
These features are intuitive quantities such as the fraction
of video played, the number of pauses made, and the aver-
age playback rate, some of which have been associated with
performance previously [8]. Then, we present our statistical
model of learning (Section 3) as two main components: a
learning model and a response model. The learning model
treats a learner’s gain in concept knowledge as proportional
to their latent engagement level while watching a lecture
video. Concept knowledge is treated as multidimensional, on
a set of latent concepts underlying the course, and videos
are associated with varying levels to different concepts. The
response model treats a learner’s performance on in-video
quiz questions, in turn, as proportional to their knowledge
on the concepts that this particular question relates to.

By defining engagement to correlate directly with perfor-

mance, we are able to learn which behavioral features lead to
high engagement through a single model. This differs from
prior works that first define heuristic notions of engagement
and subsequently correlate engagement with performance,
in separate procedures. Moreover, our formulation of latent
engagement can be made from entirely within standard learn-
ing platforms, serving as a more universally applicable and
less invasive alternative to device-based approaches.

Finally, we evaluate two different aspects of our model (Sec-
tion 4): its ability to predict unobserved, first-attempt quiz
question responses, and its ability to provide meaningful
analytics on engagement. We find that our model predicts
with high quality, achieving AUCs of up to 0.76, and out-
performing two state-of-the-art baselines on all metrics and
dataset partitions tested. One of the partitions tested cor-
responds to the beginning of the course, underscoring the
ability of our model to provide early detection of struggling
or advanced students. In terms of analytics, we find that
our model enables us to identify behavioral features (e.g.,
large numbers of pauses and rewinds, and small numbers of
fast forwards) that indicate high learner engagement, and to
track learners’ engagement patterns throughout the course.
More generally, these findings can enable an online learn-
ing platform to detect learner disengagement and perform
appropriate interventions in a fully automated manner.

2. BEHAVIORAL DATA
In this section, we start by detailing the setup of lecture
videos and quizzes in MOOCs. We then specify video-
watching clickstream data and our method for summarizing
it into behavioral features.

2.1 Course setup and data capture
We are interested in modeling learner engagement while
watching lecture videos to predict their performance on in-
video quiz questions. For this purpose, we can view an
instructor’s course delivery as the sequence of videos that
learners will watch interspersed with the quiz questions they
will answer. Let Q = (q1, q2, . . .) be the sequence of questions
asked through the course. A video could have any number
of questions generally, including none; to enforce a 1:1 cor-
respondence between video content and questions, we will
consider the “video” for question qn to be all video content
that appears between qn−1 and qn. Based on this, we will
explain the formats of video-watching and quiz response data
we work with in this section.

Our dataset. The dataset we will use is from the fall 2012
offering of the course Networks: Friends, Money, and Bytes
(FMB) on Coursera [1]. This course has 92 videos distributed
among 20 lectures, and exactly one question per video.

2.1.1 Video-watching clickstreams
When a learner watches a video on a MOOC, their behavior
is typically recorded as a sequence of clickstream actions.
In particular, each time a learner makes an action – play,
pause, seek, ratechange, open, or close – on the video
player, a clickstream event is generated. Formally, the ith
event created for the course will be in the format

Ei =< ui, vi, ei, p
′
i, pi, xi, si, ri >
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Here, ui and vi are the IDs of the specific learner (user) and
video, respectively, and ei is the type of action that ui made
on vi. pi is the position of the video player (in seconds)
immediately after ei is made, p′i is the position immediately
before,1 xi is the UNIX timestamp (in seconds) at which ei
was fired, si is the binary state of the video player – either
playing or paused – once this action is made, and ri is the
playback rate of the video player once this action is made.
Our FMB dataset has 314,632 learner-generated clickstreams
from 3,976 learners.2

The set Eu,v = {Ei|ui = u, vi = v} of clickstreams for learner
u recorded on video v can be used to reconstruct the behavior
u exhibits on v. In Section 2.2 we will explain the features
computed from Eu,v to summarize this behavior.

2.1.2 Quiz responses
When a learner submits a response to an in-video quiz ques-
tion, an event is generated in the format

Am =< um, vm, xm, am, ym >

Again, um and vm are the learner and video IDs (i.e., the
quiz corresponding to the video). xm is the UNIX timestamp
of the submission, am is the specific response, and ym is the
number of points awarded for the response. The questions
in our dataset are multiple choice with a single response, so
ym is binary-valued.

In this work, we are interested in whether quiz responses
were correct on first attempt (CFA) or not. As a result,
with Au,v = {Am|um = u, vm = v}, we consider the event
A′u,v in this set with the earliest timestamp x′u,v. We also
only consider the set of clickstreams E′u,v ⊆ Eu,v that occur
before x′u,v, as the ones after would be anti-causal to CFA.

2.2 Behavioral features and CFA score
With the data E′u,v and A′u,v, we construct two sets of in-
formation for each learner u on each video v, i.e., each
learner-video pair. First is a set of nine behavioral features
that summarize u’s video-watching behavior on v [8]:

(1) Fraction spent. The fraction of time the learner spent
on the video, relative to the playback length of the video.
Formally, this quantity is eu,v/lv, where

eu,v =
∑

i∈S
min(xi+1 − xi, lv)

is the elapsed time on v obtained by finding the total UNIX
time for u on v, and lv is the length of the video (in seconds).
Here, S = {i ∈ A′u,v : ai+1 6= open}. lv is included as an
upper bound for excessively long intervals of time.

(2) Fraction completed. The fraction of the video that the
learner completed, between 0 (none) and 1 (all). Formally,
it is cu,v/lv, where cu,v is the number of unique 1 second
segments of the video that the learner visited.

1pi and p′i will only differ when i is a skip event.
2This number excludes invalid stall, null, and error events,
as well as open and close events which are generated auto-
matically.

Figure 1: Distribution of the number of videos that
each each learner completed in FMB. More than
85% of learners completed less than 20 videos.

(3) Fraction played. The fraction of the video that the
learner played relative to the length. Formally, it is calculated
as gu,v/lv, where

gu,v =
∑

i∈S
min(p′i+1 − pi, lv)

is the total length of video that was played (while in the
playing state). Here, S = {i ∈ A′u,v : ai+1 6= open ∧ si =
playing}.

(4) Fraction paused. The fraction of time the learner
stayed paused on the video relative to the length. It is
calculated as hu,v/lv, where

hu,v =
∑

i∈S
min(ti+1 − ti, lv)

is the total time the learner stayed in the paused state on this
video. Here, S = {i ∈ A′u,v : ai+1 6= open ∧ si = paused}.

(5) Number of pauses. The number of times the learner
paused the video, or

∑

i∈A′u,v

1{ai = pause}

where 1{} is the indicator function.

(6) Number of rewinds. The number of times the learner
skipped backwards in the video, or

∑

i∈A′u,v

1{ai = skip ∧ p′i < pi}

(7) Number of fast forwards. The number of times the
learner skipped forward in the video, i.e., with p′i > pi in the
previous equation.

(8) Average playback rate. The time-average of the
learner’s playback rate on the video. Formally, it is calculated
as

r̄u,v =

∑
i∈S ri ·min(xi+1 − xi, lv)∑

i∈S min(xi+1 − xi, lv)

where S = {i ∈ A′u,v : ai+1 6= open ∧ si = playing}.
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(9) Standard deviation of playback rate. The standard
deviation of the learner’s playback rate. It is calculated as

 ∑
i∈S(ri − r̄u,v)2 ·min(xi+1 − xi, lv)∑

i∈S min(xi+1 − xi, lv)

with the same S as the average playback rate.

The second piece of information for each learner-video pair
is u’s CFA score yu,v ∈ {0, 1} on the quiz question for v.

2.3 Dataset subsets
We will consider different groups of learner-video pairs when
evaluating our model in Section 4. Our motivation for doing
so is the heterogeneity of learner motivation and high dropoff
rates in MOOCs [9]: many will quit the course after watching
just a few lectures. Modeling in a small subset of data,
particularly those at the beginning of the course, is desirable
because it can lead to “early detection” of those who may
drop out [8].

Figure 1 shows the dropoff for our dataset in terms of the
number of videos each learner completed: more than 85%
of learners completed just 20% of the course. “Completed”
is defined here as having watched some of the video and
responded to the corresponding question. Let Tu be the
number of videos learner u completed and γ(v) be the index
of video v in the course, we define Ωu0,v0 = {(u, v) : Tu ≥
u0 ∧ γ(v) ≤ v0} to be the subset of learner-video pairs
such that u completed at least u0 videos and v is within the
first v0 videos. The full dataset is Ω1,92, and we will also
consider Ω20,92 as the subset of 346 active learners over the
full course and Ω1,20 as the subset of all learners over the
first two weeks3 in our evaluation.

3. STATISTICAL MODEL OF LEARNING
WITH LATENT ENGAGEMENT

In this section, we propose our statistical model. Let U
denote the number of learners (indexed by u) and V the
number of videos (indexed by v). Further, we use Tu to
denote the number of time instances registered by learner
u (indexed by t); we take a time instance to be a learner
completing a video, i.e., watching a video and answering the
corresponding quiz question. For simplicity, we use a discrete
notion of time, i.e., each learner-video pair will correspond
to one time instance for one learner.

Our model considers learners’ responses to quiz questions
as measurements of their underlying knowledge on a set of
concepts; let K denote the number of such concepts. Further,
our model considers the action of watching lecture videos
as part of learning that changes learners’ latent knowledge
states over time. These different aspects of the model are
visualized in Figure 2: there are two main components, a
response model and a learning model.

3.1 Response Model
Our statistical model of learner responses is given by

p(y(t)u = 1|c(t)
u ) = σ(wT

v(u,t)c
(t)
u − µv(u,t) + au), (1)

3In FMB, the first two weeks of lectures is the first 20 videos.

Figure 2: Our proposed statistical model of learning
consists of two main parts, a response model and a
learning model.

where v(u, t) : Ω ⊆ {1, . . . , U} × {1, . . . ,maxu Tu} →
{1, . . . , V } denotes a mapping from a learner index-time
index pair to the index of the video v that u was watching at

t. y
(t)
u ∈ {0, 1} is the binary-valued CFA score of learner u

on the quiz question corresponding to the video they watch
at time t, with 1 denoting a correct response (CFA) and 0
denoting an incorrect response (non-CFA).

The variable wv ∈ RK
+ denotes the non-negative, K-

dimensional quiz question–concept association vector that
characterizes how the quiz question corresponding to video v
tests learners’ knowledge on each concept, and the variable
µv is a scalar characterizing the intrinsic difficulty of the quiz

question. c
(t)
u is the K-dimensional concept knowledge vector

of learner u at time t, characterizing the knowledge level of
the learner on each concept at the time, and au denotes the
static, intrinsic ability of learner u. Finally, σ(x) = 1

1+e−x is
the sigmoid function.

We restrict the question–concept association vector wv to be
non-negative in order to make the parameters interpretable
[24]. Under this restriction, the values of concept knowledge

vector c
(t)
u can be understood as follows: large, positive values

lead to higher chances of answering a question correctly, thus
corresponding to high knowledge, while small, negative values
lead to lower chances of answering a question correctly, thus
corresponding to low knowledge.

3.2 Learning Model
Our model of learning considers transitions in learners’ knowl-
edge states as induced by watching lecture videos. It is given
by

c(t)
u = c(t−1)

u + e(t)u dv(u,t), t = 1, . . . , Tu, (2)

where the variable dv ∈ RK
+ denotes the non-negative, K-

dimensional learning gain vector for video v; each entry
characterizes the degree to which the video improves learners’
knowledge level on each concept. The assumption of non-
negativity on dv implies that videos will not negatively affect

learners’ knowledge, as in [23]. c
(0)
u is the initial knowledge

state of learner u at time t = 0, i.e., before starting the
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Ω20,92 Ω1,20 Ω1,92

ACC AUC ACC AUC ACC AUC

Proposed model 0.7293±0.0070 0.7608±0.0094 0.7096±0.0057 0.7045±0.0066 0.7058±0.0054 0.7216±0.0054

SPARFA 0.7209±0.0070 0.7532±0.0098 0.7061±0.0069 0.7020±0.0070 0.6975±0.0048 0.7124±0.0050

BKT 0.7038±0.0084 0.7218±0.0126 0.6825±0.0058 0.6662±0.0065 0.6803±0.0055 0.6830±0.0059

Table 1: Quality comparison of the different algorithms on predicting unobserved quiz question responses.
The obtained ACC and AUC metrics on different subsets of the FMB dataset are given. Our proposed model
obtains higher quality than the SPARFA and BKT baselines in each case.

course and watching any video.

The scalar latent variable e
(t)
u ∈ [0, 1] in (2) characterizes

the engagement level that learner u exhibits when watching
video v(u, t) at time t. This is in turn modeled as

e(t)u = σ(βT f (t)u ), (3)

where f
(t)
u is a 9-dimensional vector of the behavioral features

defined in Section 2.2, summarizing learner u’s behavior while
the video at time t. β is the unknown, 9-dimensional pa-
rameter vector that characterizes how engagement associates
with each behavioral feature.

Taken together, (2) and (3) state that the knowledge gain a
learner will experience on a particular concept while watching
a particular video is given by

(i) the video’s intrinsic association with the concept, mod-
ulated by

(ii) the learner’s engagement while watching the video, as
manifested by their clickstream behavior.

From (2), a learner’s (latent) engagement level dictates the
fraction of the video’s available learning gain they acquire
to improve their knowledge on each concept. The response
model (1) in turn holds that performance is dictated by a
learner’s concept knowledge states. In this way, engagement
is directly correlated with performance through the concept
knowledge states. Note that in this paper, we treat the en-

gagement variable e
(t)
u as a scalar; the extension of modeling

it as a vector and thus separating engagement by concept is
part of our ongoing work.

It is worth mentioning the similarity between our character-
ization of engagement as a latent variable in the learning
model and the input gate variables in long-short term mem-
ory (LSTM) neural networks [18]. In LSTM, the change
in the latent memory state (loosely corresponding to the

latent concept knowledge state vector c
(t)
u ) is given by the

input vector (loosely corresponding to the video learning
gain vector dv) modulated by a set of input gate variables

(corresponding to the engagement variable e
(t)
u ).

Parameter inference. Our statistical model of learning
and response can be seen as a particular type of recurrent neu-
ral network (RNN). Therefore, for parameter inference, we
implement a stochastic gradient descent algorithm with stan-
dard backpropagation. Given the graded learner responses

y
(t)
u and behavioral features f

(t)
u , our parameter inference

algorithm estimates the quiz question–concept association
vectors wv, the quiz question intrinsic difficulties µv, the the
video learning gain vectors dv, the learner initial knowledge

vectors c
(0)
u , the learner abilities au, and the engagement–

behavioral feature association vector β. We omit the details
of the algorithm for simplicity of exposition.

4. EXPERIMENTS
In this section, we evaluate the proposed latent engagement
model on the FMB dataset. We first demonstrate the gain
in predictive quality of the proposed model over two baseline
algorithms (Section 4.1), and then show how our model can
be used to study engagement (Section 4.2).

4.1 Predicting unobserved responses
We evaluate our proposed model’s quality by testing its
ability to predict unobserved quiz question responses.

Baselines. We compare our model against two well-known,
state-of-the-art response prediction algorithms that do not
use behavioral data. First is the sparse factor analysis
(SPARFA) algorithm [24], which factors the learner-question
matrix to extract latent concept knowledge, but does not use
a time-varying model of learners’ knowledge states. Second is
a version of the Bayesian knowledge tracing (BKT) algorithm
that tracks learners’ time-varying knowledge states, which
incorporates a set of guessing and slipping probability pa-
rameters for each question, a learning probability parameter
for each video, and an initial knowledge level parameter for
each learner [13, 27].

4.1.1 Experimental setup and metrics
Regularization. In order to prevent overfitting, we add
`2-norm regularization terms to the overall optimization
objective function for every set of variables in both the
proposed model and in SPARFA. We use a parameter λ to
control the amount of regularization on each variable.

Cross validation. We perform 5-fold cross validation on
the full dataset (Ω1,92), and on each subset of the dataset
introduced in Section 2.3 (Ω20,92 and Ω1,20). To do so, we
randomly partition each learner’s quiz question responses
into 5 data folds. Leaving out one fold as the test set, we use
the remaining four folds as training and validation sets to
select the values of the tuning parameters for each algorithm,
i.e., by training on three of the folds and validating on the
other. We then train every algorithm on all four observed
folds using the tuned values of the parameters, and evaluate
them on the holdout set. All experiments are repeated for
20 random partitions of the training and test sets.

For the proposed model and for SPARFA, we tune both the
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Feature Coefficient

Fraction spent 0.1941

Fraction completed 0.1443

Fraction played 0.2024

Fraction paused 0.0955

Number of pauses 0.2233

Number of rewinds 0.4338

Number of fast forwards −0.1551

Average playback rate 0.2797

Standard deviation of playback rate 0.0314

Table 2: Regression coefficient vector β learned over
the full dataset, associating each clickstream feature
to engagement. All but one of the features (number
of fast forwards) is positively correlated with engage-
ment.

number of concepts K ∈ {2, 4, 6, 8, 10} and the regulariza-
tion parameter λ ∈ {0.5, 1.0, . . . , 10.0}. Note that for the
proposed model, when a question response is left out as part
of the test set, only the response is left out of the training
set: the algorithm still uses the clickstream data for the
corresponding learner-video pair to model engagement.

Metrics. To evaluate the quality of the algorithms, we
employ two commonly used binary classification metrics:
prediction accuracy (ACC) and area under the receiver oper-
ating characteristic curve (AUC) [19]. The ACC metric is
simply the fraction of predictions that are made correctly,
while the AUC measures the tradeoff between the true and
false positive rates of the classifier. Both metrics take values
in [0, 1], with larger values indicating higher quality.

4.1.2 Results and discussion
Table 1 gives the evaluation results for the three algorithms.
The average and standard deviation over the 20 random data
partitions are reported for each dataset group and metric.

First of all, the results show that our proposed model consis-
tently achieves higher quality than both baseline algorithms
on both metrics. It significantly outperforms BKT in par-
ticular (SPARFA also outperforms BKT). This shows the
potential of our model to push the envelope on achievable
quality in performance prediction research.

Notice that our model achieves its biggest quality improve-
ment on the full dataset, with a 1.3% gain in AUC over
SPARFA and a 5.7% gain over BKT. This observation sug-
gests that as more clickstream data is captured and available
for modeling – especially as we observe more video-watching
behavioral data from learners over a longer period of time
(the full dataset Ω1,92 contains clickstream data for up to
12 weeks, while the Ω1,20 subset only contains data for the
first 2 weeks) – the proposed model achieves more significant
quality enhancements over the baseline algorithms. This
is somewhat surprising, since prior work on behavior-based
performance prediction [8] has found the largest gains in the
presence of fewer learner-video pairs, i.e., before there are
many question responses for other algorithms to model on.
But our algorithm also benefits from additional question re-

Figure 3: Plot of the latent engagement level e
(t)
j

over time for one third of the learners in FMB, show-
ing a diverse set of behaviors across learners.

sponses, to update its learned relationship between behavior
and concept knowledge.

The first two weeks of data (Ω1,20) is sparse in that the
majority of learners answer at most a few questions during
this time, many of whom will drop out (see Figure 1). In
this case, our model obtains a modest improvement over
SPARFA, which is static and uses fewer parameters. The
gain over BKT is particularly pronounced, at 5.7%. This,
combined with the findings for active learners over the full
course (Ω20,92), shows that observing video-watching behav-
ior of learners who drop out of the course in its early states
(these learners are excluded from Ω20,92) leads to a slight
increase in the performance gain of the proposed model over
the baseline algorithms. Importantly, this shows that our
algorithm provides benefit for early detection, with the ability
to predict performance of learners who will end up dropping
out [8].

4.2 Analyzing engagement
Given predictive quality, one benefit of our model is that it
can be used to analyze engagement. The two parameters to
consider for this are the regression coefficient vector β and

the engagement scalar e
(t)
u itself.

Behavior and engagement. Table 2 gives each of the
estimated feature coefficients in β for the full dataset Ω1,92,
with regularization parameters chosen via cross validation.
All of the features except for the number of fast forwards are
positively correlated with the latent engagement level. This
is to be expected since many of the features are associated
with processing more video content, e.g., spending more
time, playing more, or pausing longer to reflect, while fast
forwarding involves skipping over the content.

The features that contribute most to high latent engagement
levels are the number of pauses, the number of rewinds, and
the average playback rate. The first two of these are likely
indicators of actual engagement as well, since they indicate
whether the learner was thinking while pausing the video
or re-visiting earlier content which contains knowledge that
they need to recall or revise. The strong, positive correlation
of average playback rate is somewhat surprising though:
we may expect that a higher playback rate would have a
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(a) Learners that consistently exhibit
high engagement and finish the course.

(b) Learners that exhibit high engage-
ment but drop out early.

(c) Learners that exhibit inconsistent
engagement and drop out.

Figure 4: Plot of the latent engagement level e
(t)
j over time for selected learners in three different groups.

negative impact on engagement, like fast forwarding does, as
it involves speeding through content. On the other hand, it
may be an indication that learners are more focused on the
material and trying to keep their interest higher.

Engagement over time. Figure 3 visualizes the evolution

of e
(t)
u over time for 1/3 of the learners (randomly selected).

Patterns in engagement differs substantially across learners;
those who finish the course mostly exhibit high engagement
levels throughout, while those who drop out early vary greatly
in their engagement, some high and others low.

Figure 4 breaks down the learners into three different types
according to their engagement patterns, and plots their en-
gagement levels over time separately. The first type of learner
(a) finishes the course and consistently exhibits high engage-
ment levels throughout the duration. The second type (b)
also consistently exhibits high engagement levels, but drops
out of the course after up to three weeks. The third type of
learner (c) exhibits inconsistent engagement levels before an
early dropout. Equipped with temporal plots like these, an
instructor could determine which learners may be in need
of intervention, and could design different interventions for
different engagement clusters [8, 36].

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a new statistical model for learn-
ing, based on learner behavior while watching lecture videos
and their performance on in-video quiz questions. Our model
has two main parts: (i) a response model, which relates a
learner’s performance to latent concept knowledge, and (ii)
a learning model, which relates the learner’s concept knowl-
edge in turn to their latent engagement level while watching
videos. Through evaluation on a real-world MOOC dataset,
we showed that our model can predict unobserved question
responses with superior quality to two state-of-the-art base-
lines, and also that it can lead to engagement analytics: it
identifies key behavioral features driving high engagement,
and shows how each learner’s engagement evolves over time.

Our proposed model enables the measurement of engagement
solely from data that is logged within online learning plat-
forms: clickstream data and quiz responses. In this way, it
serves as a less invasive alternative to current approaches
for measuring engagement that require external devices, e.g.,
cameras and eye-trackers [6, 16, 35]. One avenue of future
work is to conduct an experiment that will correlate our
definition of latent engagement with these methods.

Additionally, one could test other, more sophisticated char-
acterizations of the latent engagement variable. One such
approach could seek to characterize engagement as a func-
tion of learners’ previous knowledge level. An alternative or
addition to this would be a generative modeling approach of
engagement to enable the prediction of future engagement
given each learner’s learning history.

One of the long-term, end-all goals of this work is the design
of a method for useful, real-time analytics to instructors. The
true test of this ability comes from incorporating the method
into a learning system, providing its outputs – namely, per-
formance prediction forecasts and engagement evolution – to
an instructor through the user interface, and measuring the
resulting improvement in learning outcomes.

Acknowledgments
Thanks to Debshila Basu Mallick for discussions on the
different types of engagement.

6. REFERENCES
[1] Networks: Friends, Money, and Bytes. https:

//www.coursera.org/course/friendsmoneybytes.

[2] L. Allen, M. Jacovina, M. Dascalu, R. Roscoe, K. Kent,
A. Likens, and D. McNamara. {ENTER}ing the time
series {SPACE}: Uncovering the writing process
through keystroke analyses. In Proc. Intl. Conf. Educ.
Data Min., pages 22–29, June 2016.

[3] A. Anderson, S. Christenson, M. Sinclair, and C. Lehr.
Check & connect: The importance of relationships for
promoting engagement with school. J. School Psychol.,
42(2):95–113, Mar. 2004.

[4] A. Anderson, D. Huttenlocher, J. Kleinberg, and
J. Leskovec. Engaging with massive online courses. In
Proc. Intl. Conf. World Wide Web, pages 687–698, Apr.
2014.

[5] R. Baker, A. Corbett, and K. Koedinger. Detecting
student misuse of intelligent tutoring systems. In Proc.
Intl. Conf. Intell. Tutoring Syst., pages 531–540, Aug.
2004.

[6] R. Bixler and S. D’Mello. Automatic gaze-based
user-independent detection of mind wandering during
computerized reading. User Model. User-adapt.
Interact., 26(1):33–68, Mar. 2016.

[7] C. Brinton, S. Buccapatnam, F. Wong, M. Chiang, and
H. Poor. Social learning networks: Efficiency
optimization for MOOC forums. In Proc. IEEE Conf.

Proceedings of the 10th International Conference on Educational Data Mining 70



Comput. Commun., pages 1–9, Apr. 2016.

[8] C. Brinton and M. Chiang. MOOC performance
prediction via clickstream data and social learning
networks. In Proc. IEEE Conf. Comput. Commun.,
pages 2299–2307, April 2015.

[9] C. Brinton, R. Rill, S. Ha, M. Chiang, R. Smith, and
W. Ju. Individualization for education at scale: MIIC
design and preliminary evaluation. IEEE Trans. Learn.
Technol., 8(1):136–148, Jan. 2015.

[10] H. Cen, K. Koedinger, and B. Junker. Learning factors
analysis – A general method for cognitive model
evaluation and improvement. In Proc. Intl. Conf. Intell.
Tutoring Syst., pages 164–175, June 2006.

[11] L. Chen, X. Li, Z. Xia, Z. Song, L. Morency, and
A. Dubrawski. Riding an emotional roller-coaster: A
multimodal study of young child’s math problem
solving activities. In Proc. Intl. Conf. Educ. Data Min.,
pages 38–45, June 2016.

[12] C. Coleman, D. Seaton, and I. Chuang. Probabilistic
use cases: Discovering behavioral patterns for
predicting certification. In Proc. ACM Conf. Learn at
Scale, pages 141–148, Mar. 2015.

[13] A. Corbett and J. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge. User
Model. User-adapt. Interact., 4(4):253–278, Dec. 1994.

[14] C. Farrington, M. Roderick, E. Allensworth,
J. Nagaoka, T. Keyes, D. Johnson, and N. Beechum.
Teaching Adolescents to Become Learners: The Role of
Noncognitive Factors in Shaping School Performance–A
Critical Literature Review. Consortium on Chicago
School Research, 2012.

[15] B. Gelman, M. Revelle, C. Domeniconi, A. Johri, and
K. Veeramachaneni. Acting the same differently: A
cross-course comparison of user behavior in MOOCs. In
Proc. Intl. Conf. Educ. Data Min., pages 376–381, June
2016.

[16] M. Gilzenrat, J. Cohen, J. Rajkowski, and
G. Aston-Jones. Pupil dynamics predict changes in task
engagement mediated by locus coeruleus. In Proc. Soc.
Neurosci. Abs., page 19, Nov. 2003.

[17] P. Guo, J. Kim, and R. Rubin. How video production
affects student engagement: An empirical study of
MOOC videos. In Proc. ACM Conf. Learn at Scale,
pages 41–50, Mar. 2014.

[18] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735–1780, Nov. 1997.

[19] H. Jin and C. Ling. Using AUC and accuracy in
evaluating learning algorithms. IEEE Trans. Knowl.
Data Eng., 17(3):299–310, Mar. 2005.

[20] J. Kim, P. Guo, D. Seaton, P. Mitros, K. Gajos, and
R. Miller. Understanding in-video dropouts and
interaction peaks in online lecture videos. In Proc.
ACM Conf. Learn at Scale, pages 31–40, Mar. 2014.

[21] R. Kizilcec, C. Piech, and E. Schneider. Deconstructing
disengagement: Analyzing learner subpopulations in
massive open online courses. In Proc. Intl. Conf. Learn.
Analyt. Knowl., pages 170–179, Apr. 2013.

[22] K. Koedinger, J. Kim, J. Jia, E. McLaughlin, and
N. Bier. Learning is not a spectator sport: Doing is
better than watching for learning from a MOOC. In
Proc. ACM Conf. Learn at Scale, pages 111–120, Mar.
2015.

[23] A. Lan, C. Studer, and R. Baraniuk. Time-varying
learning and content analytics via sparse factor
analysis. In Proc. ACM SIGKDD Intl. Conf. Knowl.
Discov. Data Min., pages 452–461, Aug. 2014.

[24] A. Lan, A. Waters, C. Studer, and R. Baraniuk. Sparse
factor analysis for learning and content analytics. J.
Mach. Learn. Res., 15:1959–2008, June 2014.

[25] L. Malkiewich, R. Baker, V. Shute, S. Kai, and
L. Paquette. Classifying behavior to elucidate elegant
problem solving in an educational game. In Proc. Intl.
Conf. Educ. Data Min., pages 448–453, June 2016.

[26] J. McBroom, B. Jeffries, I. Koprinska, and K. Yacef.
Mining behaviours of students in autograding
submission system logs. In Proc. Intl. Conf. Educ. Data
Min., pages 159–166, June 2016.

[27] Z. Pardos and N. Heffernan. Modeling individualization
in a Bayesian networks implementation of knowledge
tracing. In Proc. Intl. Conf. User Model. Adapt.
Personalization, pages 255–266, June 2010.

[28] J. Reich, B. Stewart, K. Mavon, and D. Tingley. The
civic mission of MOOCs: Measuring engagement across
political differences in forums. In Proc. ACM Conf.
Learn at Scale, pages 1–10, Apr. 2016.

[29] M. San Pedro, E. Snow, R. Baker, D. McNamara, and
N. Heffernan. Exploring dynamical assessments of
affect, behavior, and cognition and Math state test
achievement. In Proc. Intl. Conf. Educ. Data Min.,
pages 85–92, June 2015.

[30] C. Shi, S. Fu, Q. Chen, and H. Qu. VisMOOC:
Visualizing video clickstream data from massive open
online courses. In IEEE Pacific Visual. Symp., pages
159–166, Apr. 2015.

[31] S. Slater, R. Baker, J. Ocumpaugh, P. Inventado,
P. Scupelli, and N. Heffernan. Semantic features of
Math problems: Relationships to student learning and
engagement. In Proc. Intl. Conf. Educ. Data Min.,
pages 223–230, June 2016.

[32] S. Tomkins, A. Ramesh, and L. Getoor. Predicting
post-test performance from online student behavior: A
high school MOOC case study. In Proc. Intl. Conf.
Educ. Data Min., pages 239–246, June 2016.

[33] A. Vail, J. Wiggins, J. Grafsgaard, K. Boyer, E. Wiebe,
and J. Lester. The affective impact of tutor questions:
Predicting frustration and engagement. In Proc. Intl.
Conf. Educ. Data Min., pages 247–254, June 2016.

[34] X. Wang, D. Yang, M. Wen, K. Koedinger, and C. Rosé.
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