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Abstract—A Social Learning Network (SLN) emerges when
users exchange information on educational topics with struc-
tured interactions. The recent proliferation of massively scaled
online (human) learning, such as Massive Open Online Courses
(MOOCs), has presented a plethora of research challenges
surrounding SLN. In this paper, we ask: how efficient are these
networks? We propose a method in which SLN efficiency is
determined by comparing user benefit in the observed net-
work to a benchmark of maximum utility achievable through
optimization. Our method defines the optimal SLN through
utility maximization subject to a set of constraints that can
be inferred from the network, and given multiple solutions
searches for the one closest to the observed network so as to
require the least amount of change to user behavior in practice.
Through evaluation on four MOOC discussion forum datasets
and optimizing over millions of variables, we find that SLN
efficiency can be rather low (from 76% to 90% depending on
the specific parameters and dataset), which indicates that much
can be gained through optimization. We find that the gains in
global utility (i.e., average across users) can be obtained without
making the distribution of local utilities (i.e., utility of individual
users) less fair. We also propose an algorithm for realizing the
optimal network through curated news feeds in online SLN.

I. INTRODUCTION

The term Social Learning Network (SLN) encapsulates a
range of scenarios in which a number of people learn from
one another through structured interactions. The proliferation
of online communication has given rise to a number of SLN
applications, including Question and Answer (Q&A) sites
(e.g., Quora), enterprise social networks (e.g., Jive, Yammer),
and platforms for online education which have in turn created
learning networks among askers/answerers, employees, and
students, respectively [2].

Within the realm of online (human) learning, one of the
most profound applications of SLN today is the Massive
Open Online Course (MOOC). MOOCs, offered by platforms
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such as Coursera, edX, and Udacity, have scaled distance
education to previously unimaginable sizes, reaching hundreds
of thousands of students within single sessions of a course [3].
But they also suffer from low completion rates, often attributed
factors such as low teacher-to-student ratios, a lack of face-
to-face interaction, and asynchronous scheduling [4].

In an effort to alleviate some of these problems,
MOOC platforms typically provide discussion forums within
each course. These forums serve as the primary means
for interaction between students (through user-generated
posts/comments), providing an avenue for question asking and
answering similar to the structure of Q&A sites [2]. While
MOOC forums can be monitored by instructors and teaching
staff, the large volume of students (e.g., > 4.2K for one of the
datasets in Table I) and posts made by students overall (e.g.,
>25K for the same dataset) makes it infeasible for the staff
to handle each individual question. As a result, the efficacy
of these forums hinges on the notion that when a student
posts a question on a topic, one (or more) of her peers will
respond with an answer sufficient in quality, i.e., that strong
social ties will form between topical experts and those seeking
information regarding the same topics [5]. It is unclear whether
the SLN in MOOC forums tend to form in such an ideal
manner, though, especially given that each individual student
may only generate a handful of posts throughout the lifetime
of a course [4].

In this paper, we are motivated by the following three
questions related to the SLN of MOOC discussion forums:
• How efficient is the observed information exchange be-

tween users?
• What does the ideal SLN look like?
• How does the structure of the ideal SLN differ from that

of the observed SLN?

A. SLN Efficiency Modeling Methodology
To study our research questions, we propose a novel

methodology for modeling SLN efficiency (Sec. II). The objec-
tive of our methodology is to compare the benefit obtained by
users in the network as it exists presently (called the Observed
SLN) to that which can theoretically be obtained through
optimization (called the Ideal SLN). The key components of
this methodology are outlined in Fig. 1. In what follows, we
will introduce these components, highlighting the challenges
involved and contributions made:
Observed SLN. The Observed SLN is gathered through
network identification (Sec. II-A, III-A). The key challenge
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Fig. 1: High-level block diagram of the SLN optimization method-
ology developed in this paper.

here is quantifying the notion of a link between two users
from their observed discussions, given that the number of
posts made by individual users can be limited. We develop
a probabilistic message-passing approach with smoothing for
link weight inference.
Ideal SLN. To obtain the Ideal SLN, we first model each
user individually as possessing certain levels of seeking (i.e.,
question asking) and disseminating (i.e., question answering)
tendencies (Sec. II-A, III-B). A challenging consideration in
this Parameter Estimation stage is how to infer whether a
student is asking or answering a question. Further, this is
ideally done on a topic-specific basis to account for the fact
that students may have different needs on different topics [4].
As a result, our Topic Extraction process develops a set of
latent educational topics for the course, using the student-
generated discussion text as input.

With the user parameters and observed SLN in hand, Fig.
1 proceeds to Network Optimization. The purpose of this is
to search for a social structure that maximizes global user
benefit while at least preserving the benefits of each individual
(Sec. II-C, III-C). In terms of knowledge transfer, we identify
at least two ways that a user will benefit from an SLN: (i)
by learning from others directly, and (ii) by explaining topics
to others, i.e., learning by teaching [6]. The components of
our framework give us a natural way of quantifying these
two benefits: (i) assess the match between a user’s seeking
tendency and the disseminating tendencies of her neighbors,
and (ii) assess the match between the user’s disseminating
tendencies and the seeking tendencies of her neighbors. In
an ideal setting, both of these would be as large as possible.
Therefore, the optimization we develop searches for the SLN
that is most compatible with the individual tendencies of the
users, trading off the global utility (i.e., average benefit) and
local utility (i.e., individual benefits). It also accounts for the
fact that the amount a user will participate in the forums is
constrained by her own resource limitations.

There is some existing work on studying the content of
MOOC forums (e.g., [7]) and some studying the graph struc-
ture (e.g., [8]); our work considers a unified view of both
components. Also, different from the optimization of users
to questions proposed in [9], our method accounts for the
difference between seeking and disseminating tendencies of
users over a multidimensional topic space.
Algorithms for optimization. The Network Optimization
poses two computational challenges that must be overcome

in the implementation (Sec. III). First is one of scalability:
it has several million variables corresponding to the weights
in a directed user-to-user graph, making it intractable for
standard convex optimization solvers [10]. As a result, we
derive a projected gradient descent algorithm for this problem
(Sec. III-C) in which the projection step becomes quadratic,
and in turn derive a proximal alternating direction method of
multipliers (ADMM) algorithm to perform the projection (in
App. B, available as online supplementary material).

The second challenge is non-uniqueness: the optimization
problem has non-unique solutions for realistic parameter val-
ues (proven in App. A, available as online supplementary
material), posing the question of which solution is most useful
and how that can be obtained. Intuitively, the network that
is the shortest distance away from the observed is desirable
because it requires the least amount of change in user behavior
to realize in practice. As a result, we introduce a regularization
term to the objective that forces the algorithm to converge to
this particular solution.

B. Performance Evaluation

After formalizing our methodology, we perform an effi-
ciency evaluation on four real world MOOC datasets (Sec.
IV). In comparing the observed and optimal SLN, we make
three key observations:
• The observed efficiencies can be rather low, ranging from

76% to 90% of the optimal depending on the specific
parameters and dataset.

• The optimal SLN has a much more homogeneous struc-
ture, with both outgoing degree and edge weight distri-
butions becoming more uniform.

• The optimal SLN does not penalize the fairness of local
utilities, and in fact increases utility for individual users
in the majority of cases.

We will also discuss the implications of these results to
MOOCs and social learning in general (Sec. IV, V). They
indicate that SLN today tend to form in an inefficient manner,
with substantial room for improvement through optimization
without incurring the cost associated with adding additional
instructors to each course. Given each user’s finite capacity
for contributing to the network, they should spread their par-
ticipation more uniformly across questions they have expertise
in, rather than focusing on those asked by particular users they
have previously communicated with. The edge weights from
our optimization indicate how to form these connections.

C. Improving SLN Efficiency

In general, there are three steps involved in improving the
efficiency of an SLN: (i) defining the ideal SLN through
optimization, (ii) solving for the optimal SLN, and (iii) im-
plementing the optimized network in practice to observe the
improvements. As the focus of this work is formulating and
evaluating a model for efficiency, our main contributions are
the first two steps, allowing us to quantify the gains that
will be obtained when the modeling assumptions hold. In the
final part of this paper (Sec. V), we outline the requirements
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and challenges of the third step for future work, and propose
an algorithm for realizing the optimized network by curating
users’ news feeds based on recommended interactions.

II. SLN EFFICIENCY

To quantify the efficiency of an SLN, we pose the following
question: How much are users benefiting from the observed
network topology relative to how much they could benefit
from an optimized topology? In this section, we formulate our
efficiency methodology, consisting of our graph model (Sec.
II-A), utility model (Sec. II-B), and optimization (Sec. II-C).

A. Graph Modeling of SLN (W , S, and D)

We will first define and model the fundamental components
of an SLN.
Users. At its core, an SLN is a network of users (i.e., learners)
sharing information on different topics. We let u ∈ U denote
user u in the set of users U = {1, 2, ...} that comprise the
SLN.
Network. In studying efficiency, we are interested in the
interaction structure between users. We define W = [wu,v],
for u, v ∈ U (wu,u = 0) to be the weighted adjacency matrix
of the user-to-user network, where wu,v represents the spread
of information from u to v. More concretely, we consider
0 ≤ wu,v ≤ 1 to be the probability that u will respond to
v when v makes a post. Note that wu,v 6= wv,u in general,
i.e., the matrix is asymmetric.
Topics. Discussions in an SLN center around a series of
(possibly latent) topics. We let k ∈ K = {1, 2, ...} denote
topic k in the set of discussion topics K for the SLN.
Seeking and disseminating. A user will have some tendency
towards disseminating information (i.e., providing answers
or facts about the material) and/or seeking information (i.e.,
asking questions about material) on a topic-by-topic basis.
In order to capture this behavior, we define su,k ≥ 0 to be
user u’s seeking tendency on topic k, and du,k ≥ 0 as her
disseminating tendency on k, with S = [su,k] and D = [du,k].

In some SLN applications, it is reasonable to assume that
only one of su,k and du,k will be positive for a given u, k
pair (e.g., on some Q&A sites, like Stackoverflow, there is a
distinction between those who answer vs. ask questions on a
topic). More generally, and for MOOC in particular, a user
may both seek and disseminate on a topic; for example, a
student may have a question she posted answered and then
herself answer someone’s similar question later. As a result,
we do not impose any such restrictions on S and D.

Will discuss our algorithms for inferring W , K, S, and D
from SLN data in Sec. III.

B. Utility Modeling of SLN (B, Φ, Ψ)

We now formalize user benefit and utility in an SLN.
Benefit. We identify two types of user benefit:
(i) Learning benefit: Intuitively, user u will gain from hav-
ing higher connections to those who tend to disseminate
information on topics that u asks questions on. We quantify
this as su,k · f(

∑
v wv,udv,k), where wv,udv,k captures the

expected amount of response provided from v to u on topic
k, and f(·) is a concave function to capturing diminishing
return associated with receiving more response. This entire
term is weighted by su,k, which weighs each topic differently
depending on how much information u is seeking on the topic.
(ii) Teaching benefit. In peer-to-peer learning, users also draw
benefit from acting as teachers to others, i.e., from learning
by teaching [2], [6]. For user u, this can be quantified as
du,k · f(

∑
v wu,vsv,k), where wu,vsv,k captures the amount

by which u will provide information to user v that is sought
by v about topic k, and f(·) captures the diminishing return
aspect of learning from teaching. This entire term is weighted
by du,k, which is a measure of the amount of information u
provides about the topic.

Now, let B = [bu,k] be the matrix of user-topic benefits,
where bu,k ≥ 0 is the utility obtained by user u with respect
to topic k. These benefits are modeled as:

bu,k = su,k log(1 +
∑
v

wv,udv,k)

+ αu · du,k log(1 +
∑
v

wu,vsv,k).
(1)

Here, αu quantifies the benefit of teaching relative to learning
for user u; we will discuss the approach we take for setting
αu in Sec. IV. We choose f(x) = log(1 + x) because it is a
standard function used to capture diminishing marginal utility.
SIDR and DISR. For each u, k pair, we also define the
Seeking to Incoming Disseminating Ratio (SIDR)

φu,k =
su,k∑

v wv,udv,k
(2)

and the Disseminating to Incoming Seeking Ratio (DISR)

ψu,k =
du,k∑

v wu,vsv,k
, (3)

with Φ = [φu,k] and Ψ = [ψu,k]. A smaller SIDR φu,k implies
that u’s seeking tendency on topic k has higher satisfaction
from the incoming disseminating tendencies of her neighbors.
A smaller DISR ψu,k implies that u’s disseminating tendency
on k is being used to satisfy more of her neighbor’s seeking
tendency. These will be used as constraints in Sec. II-C.
Utility. We quantify two different types of utility:
(i) Local utility: The local utility lu of an SLN to a specific
user u is defined as the total benefit obtained by u across all
topics k. From (1), this is obtained as

lu =
∑
k

bu,k. (4)

(ii) Global utility: The global utility g is defined as the average
local utility across users. From (1),

gαu
=

1

|U|
∑
u,k

bu,k. (5)

C. Optimizing SLN

From the definitions in Sec. II-A and II-B, our optimization
seeks the combination of weights W in the SLN that will (i)
maximize the global utility g of the SLN while (ii) minimizing
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the impact on – and potentially improving – the benefits
that are already provided to specific user-topic pairs from
the observed network Ŵ . Formally, for fixed seeking S and
disseminating D tendencies, our optimization over W is given
as follows:

maximize
W

gαu
(W ) (6a)

subject to Φ(W ) ≤ CsΦ̂ (6b)

Ψ(W ) ≥ CdΨ̂ (6c)
0 ≤W ≤ 1, diag(W ) = 0 (6d)

There are two linear constraints (besides bounds):
(i) Preserving incoming information (6b): Φ(W ) = [φu,k(W )]
denotes the SIDR resulting from a given W for each u, k pair.
On the right, Φ̂ = [φ̂u,k] is the matrix of observed SIDR from
Ŵ , i.e., φ̂u,k = φu,k(Ŵ ). If φu,k(W ) < φ̂u,k, this means that
the amount of information transferred to user u on topic k
(i.e.,

∑
v wv,udv,k) in W is larger than it was in Ŵ ; if it holds

∀k, then the local utility lu in (4) will increase. Cs > 0 is a
tightness parameter enforcing that the SIDR after optimization
cannot exceed Cs times what it was before. If Cs < 1, we are
requiring a tighter bound than what was observed, whereas if
Cs > 1, we allow any particular SIDR to rise if needed.

A direct lower bound on the benefits bu,k (or local utilities
lu) may appear to be a more natural form for (6b). This,
however, would introduce a concave constraint to (6), which
would necessitate the use of interior point methods that are not
generally scalable to the millions of variables we consider here
[10]. The linear constraint set will allow us to derive a scalable
projected gradient descent procedure in Sec. III-C to solve (6)
with convergence guarantees. With (6b) in its proposed form,
we will investigate the impact of optimization on the local
utilities through experimentation in Sec. IV-D.
(ii) Balancing load (6c): By (1), a higher incoming seeking
score

∑
v wu,vsv,k leads to a higher teaching benefit bu,k.

But each user also has a finite capacity on the amount of
participation she can provide, which depends on a number of
external factors, e.g., time commitments and willingness to
use the forums in the first place. In this constraint, DISR is
restricting the amount of seeking tendency a user is addressing
(i.e.,

∑
v wu,vsv,k) with her dissemination (i.e., du,k) to not

exceed Cd > 0 times what it was observed to be already.
Ψ̂ = [ψ̂u,k] is the matrix of DISR from the observed network,
i.e., ψ̂u,k = ψu,k(Ŵ ). If Cd > 1, we are requiring users to
participate less than what was observed. If Cd < 1, on the
other hand, we allow any particular DISR to drop (i.e., user
participating more) if needed. Cd = 1 would be a conservative
selection, because under the optimized network, we can expect
that users will be incentivized to participate more.

Note that an upper bound on the sum of the outgoing
weights, i.e.,

∑
v wu,v ≤ w̄u, would not exactly capture the

participation capacity for (6c): each user v demands a different
teaching load on a particular topic, quantified by sv,k. Varying
Cd will also allow us to evaluate the effect of potential errors
in estimating Ψ̂, i.e., having underestimated (Cd < 1) or
overestimated (Cd > 1) user load from the data.

Definition 1 (SLN efficiency). Let g?αu,Cs,Cd
be the value that

(6a) takes for an optimal solution W ? of (6) for fixed S, D,
and parameters αu, Cs ≥ 1, Cd ≤ 1.1 The efficiency of the
SLN for its observed matrix Ŵ is quantified as

ηgαu,Cs,Cd
= gαu(Ŵ )/g?αu,Cs,Cd

. (7)

In other words, ηg is the fraction of the global utility
achievable in the optimized network that is already obtained
by the observed network Ŵ .
Nonuniqueness. Note that in (6), the objective is concave
and the constraints are linear in W , making this a convex
optimization problem. But in App. A, we prove that (6a) is not
a strictly convex function, and that any optimal solution W ? to
(6) is not unique under realistic conditions on S and D. As a
result, the algorithm that we propose to solve this optimization
in Sec. III will find the optimal solution W ?

I closest to Ŵ so
as to induce the least amount of change in user behavior from
the observed network.

III. INFERENCE AND OPTIMIZATION ALGORITHMS

To compute the efficiency (7), we need to determine the
observed social network (Ŵ ), solve (6) to obtain an optimized
SLN (W ∗), and find the global utilities g(Ŵ ) and g?. To solve
the optimization and find the utilities, we must also infer the
seeking (S) and disseminating (D) tendencies, which lead to
the observed SIDR (Φ̂) and DISR (Ψ̂) matrices. In this section,
we will describe how we infer these quantities and solve (6).
Forum structure. We first develop terminology for the struc-
ture of forums on MOOC platforms. Typically, each course has
a single forum comprised of a series of threads. Each thread
is comprised of one or more posts, with each post written by a
single user. A post, in turn, can have one or more comments;
for our purposes, we do not distinguish between posts and
comments, and refer to them both as posts. If comments
were always written in response to posts, then the relationship
between them could be useful for inferring the observed SLN
in Sec. III-A and Q&A tendencies in Sec. III-B2; however,
MOOC users do not abide to this structure consistently [4].

In what follows, let r ∈ R denote thread r in the set of
threads R = {1, 2, ...} for a course, ordered chronologically
by creation time. Let pr ∈ Pr denote post p in the set P =
{1, 2, ...} for r, also indexed chronologically.2 Each p has an
associated user u(p), creation time t(p), and text x(p) written
by u(p). Here, x = (x1, x2, ...) is the sequence of words and
punctuation marks written by the user, where xi ∈ X is the
index into the dictionary X ; X is the set of all words and
marks that appear across all posts in the course forum.

A. Computing the Observed Social Network (Ŵ )

The first component of the SLN is the observed user-to-
user network Ŵ = [ŵu,v]. With Pr,u ⊆ Pr as the subset of
posts in r made by u, there are a number of possibilities for
doing so. For one, we could use the co-participation count
between u and v across threads R as a measure of ŵu,v , e.g.,
through the one-mode projection

∑
r min(|Pr,u|, |Pr,v|) [8].

1Ŵ is only in the feasible region of (6) for these ranges of Cs and Cd.
2We will drop subscripts like r when the context makes it clear.
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Name Title URL Handle Type Start Weeks Users Threads Posts
ml Machine Learning ml-003 T 4/29/13 12 4263 4217 25,481

comp English Composition I composition-003 H 9/22/14 13 3013 4656 16,276
algo Algorithms: Design and Analysis I algo-004 T 7/01/13 8 1862 1256 8255
shake Shakespeare in Community virtualshakespeare-001 H 4/22/15 5 958 1389 7484

TABLE I: Basic statistics of the four datasets used, each corresponding to a different Coursera course session. The title, URL handle, type
(Technical (T) or Humanities (H)), start date (m/dd/yy), duration (weeks), and number of users, threads, and posts are given for each.

But analyzing the user-thread bipartite graph directly leads
to a symmetric Ŵ : while this may be a valid assumption
for friendship networks [4], it is not realistic to assume that
interaction in an SLN is symmetric, since u answering v does
not imply v will answer to u with the same probability.

We infer the ŵu,v instead through the following message-
passing formulation: If v makes a post in r, what is the
probability that u will respond to this post? In doing so, we
use the following heuristic to infer which posts are meant as
responses to others: if a unique post p′ ∈ Pr,u is made by u
after the post p ∈ Pr,v (i.e., t(p′) > t(p)), then p′ is counted
as a response to p.

1) Computing ŵu,v: Formally, let nu,v be the number of
times that u posts after v, with nu,u = 0 (our algorithm for
obtaining nu,v is given next). With Nv =

∑
r |Pr,v| as the

number of times v posted in the course, ŵu,v = nu,v/Nv is the
fraction of times u responded to v. Since the Nv will be diverse
among forum users, giving each u varying opportunities to
respond to v in the first place, we apply a standard shrinkage
estimator [11], [12] to smoothen the ŵu,v towards u’s overall
response rate

∑
j nu,j/

∑
j Nj :

ŵu,v(σ) =
nu,v + σ(

∑
j nu,j/

∑
j Nj)Nmax

Nv + σNmax
, (8)

where σ is the smoothing parameter and Nmax = maxiNi is
the maximum number of times a user posted.

Note that (8) with σ = 0 gives the non-smoothened version
ŵu,v = nu,v/Nv , i.e., the fraction of posts u was observed
to write in reply to v. All else constant, as σ is increased, a
user is expected to spread his/her overall response rate more
uniformly among the other users in the SLN. We will consider
the effect of smoothing in Sec. IV, retaining σ = 0 as the
default value corresponding to the observed SLN.

2) Computing nu,v: In computing nu,v , the key is to ensure
that within a thread r, (i) u is counted as responding at most
once to each post made by v, and (ii) each post made by u
is counted as a response to v at most once. Let Iru,v be the
set of post-response pairs (from u to v) in thread r. Starting
with Iru,v = ∅, for each q ∈ Pr,v , (p, q) is added to Iru,v if
the following conditions are satisfied: µ(q) = v, t(p) > t(q),
(y, q) 6∈ Iru,v ∀y ∈ Pr,u, and (p, z) 6∈ Iru,v ∀z ∈ Pr,v . These
conditions ensure that each of p and q occurs only once in
Iru,v , i.e., u responds at most once to each q ∈ Pr,v , and each
p ∈ Pr,u is counted as a response to v at most once. With
this, nu,v =

∑
r |Iru,v|.

With this specification of nu,v , the requirement for post p
to be counted as a response to post q is less stringent than e.g.,
viewing p as a response to q only if it is an explicit comment to
q. Indeed, as stated, MOOC users do not abide by the structure
of posts vs. comments consistently [4]. Also, by taking this

approach, the number of counted responses from u becomes
larger than the number of posts made by u, i.e.,

∑
v nu,v >

Nu; since the average number of posts per user tends to be
small in MOOC, including in our datasets (see Table I), this
improves the sample size for parameter estimation.

B. Inferring Seeking and Disseminating Tendencies (S and D)

Another component of SLN is the seeking S = [su,k] and
disseminating D = [du,k] tendencies.3 We estimate su,k and
du,k in three steps: (1) extracting the forum topics from the
text, (2) inferring whether each post is a question or an answer,
and (3) computing su,k and du,k from (1) and (2).

1) Topic extraction: We employ Latent Dirichlet Allocation
(LDA), a popular generative model for topic extraction from
a collection of documents [14]. LDA has been applied to
discussion forums in several studies, e.g., in [5], [15].

Formally, consider a collection of documents N , where
each n ∈ N is written as a series of word indices dn =
(dn,1, dn,2, ...), dn,j being an index into the dictionary X ′ (we
will discuss the choice of n and X ′ further below). Under LDA
[14], each document n is modeled as a random mixture over
a set of topics K, and each k ∈ K is in turn characterized
as a distribution over X ′. The document-topic distributions
θ = [θn,k] ∈ [0, 1]|N |×|K| are such that θn,k gives the
proportion of n made up of k, and the topic-word distributions
β = [βk,x] ∈ [0, 1]|K|×|X

′| are such that βk,x gives the fraction
of k made up of word x. Under the generative process for
LDA, each word position j in document n is assigned a single
topic cn,j , where cn,j ∈ K is chosen from a multinomial
distribution over θn = {θn,1, ..., θn,|K|}. With k = cn,j , the
specific word xn,j ∈ X ′ for each position is then chosen from
a multinomial distribution over βk = {βk,1, ..., βk,|X ′|}.4

In developing LDA for our application, we must choose
at which granularity of content to define a document, and
which words X ′ ⊂ X to be considered within each document.
We use each post p as a separate document (similar to in
[15]) since there can be multiple topic proportions within a
thread (i.e., the discussions may evolve over time). From the
set of words and punctuation marks X , we obtain X ′ ⊂ X
by: (i) removing all URLs, (ii) removing all punctuations,
(iii) removing all stopwords from an aggressive 635 stopword
list,5 (iv) stemming all words left in X , and finally (v)
removing all words of length 1. We will see in Sec. IV-B1
that these methods and choices result in sets of topics that are
qualitatively representative of key course discussions.

3These can be inferred independent of specific k, similar to in [9], but this
is undesirable because the topics discussed in MOOC are diverse [4], [13].

4Note that the multinomials here are single trials, as each wn,j is generated
from a single topic k.

5http://www.webconfs.com/stop-words.php
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2) Question/answer tendency: With the post-topic distribu-
tions θ, the next step in inferring su,k and du,k is to determine
if each post p is a question or an answer. We define Q(p) as
an indicator of whether the text x(p) is a question (Q(p) = 1)
or not (Q(p) = 0). We will describe our specific method for
determining Q(p) below; to reduce noise associated with each
Q(p) irrespective of the method, we will consider the averaged
question tendency qu,r,k of user u in thread r for topic k. This
is defined as the weighted-average Q(p) for u with respect to
the post-topic proportions θp,k:

qu,r,k =

∑
p∈Pr,u

θp,k ·Q(p)∑
p∈Pr,u

θp,k
. (9)

In general, question detection algorithms can be divided into
two groups: rule-based methods, e.g., whether a question mark
is present [5], and learning-based methods, e.g., classifiers
analyzing sequences of parts of speech [16]. In our work,
we apply a series of rule-based methods, as some of them
have demonstrably high quality; for example, in [16], question-
mark detection had an F1-score (F1) of roughly 85% on two
datasets.6 Formally, let ?p denote the event “question mark
∈ x(p)”, let 5W1Hp denote “who, what, where, when, why, or
how ∈ x(p)”, and let UGp denote “please, thanks, help, con-
fuse, grateful, or appreciate ∈ x(p)”.7 Q(p) is determined as:
Q(p) = ?p∪5W1Hp∪UGp if p = 1; Q(p) = ?p∩(5W1Hp∪UGp)
if p 6= 1. We conditioned Q(p) this way because a high
proportion of the first posts in threads (p = 1) will be
questions, with users creating threads for this purpose; for all
other posts (p 6= 1), we required ?p to be true, and at least
one question-type word to protect against false positives.
Small experiment. To test our intuitions, we obtained human
generated labels on some posts to compare with our Q(p). To
do so, we gathered all threads from our datasets in Sec. IV that
had between 10 and 25 posts, and chose 50 threads randomly
from this set. This yielded a total of 749 posts. We then
recruited three individuals to label each post as either seeking
information, denoted Qo(p) = 1, or providing information,
denoted Qo(p) = 0. For each p, we took the majority vote
among the three labels as the true Qo(p).

We make two observations on the results: First, only 19.6%
of the 749 total posts had Qo(p) = 1, whereas 52.0% of the
50 posts with p = 1 had Qo(p) = 1. This suggests that while
a first thread post is a question only roughly half of the time,
these posts have significantly higher chance of Qo(p) = 1
than do those with p 6= 1. Second, in comparing the Q(p) and
Qo(p) ∀p, our method obtains an accuracy of 0.86 and an F1
of 0.65. This accuracy is quite high, but the F1 is lower than
those cited in e.g., [16] for other methods, which emphasizes
the importance of averaging in (9) to reduce noise.

3) su,k and du,k estimation: Finally, we estimate the dis-
seminating and seeking tendency of user u on topic k as

du,k =
∑
r

(1− qu,r,k) · log(1 +
∑

p∈Pr,u

θp,k · |x′p|), (10)

6The (balanced) F1-score of a classifier is the harmonic mean of the
precision and recall, which is a standard way of evaluating a classifier [11].

75W1H are standard question words. We observed that urgency/gratitude
(UG) words tend to appear frequently in question posts too.

Algorithm 1 Projected gradient descent algorithm to solve (6).

Input: Ŵ , S, D, Φ̂, Ψ̂, αu ∀u, Cs, Cd, N = |U|, T
Initialize: g̃[−1]← −∞, W [0]← Ŵ , n← 0, γ
g̃[0]← g̃(W [0])

while (g̃[n]− g̃[n− 1]) / |g̃[n− 1]| ≥ T do
W ′[n+1]←W [n]+γ[n] ·∇g̃(W [n]) {∇g̃(W [n]) from (13)}
W [n+ 1]← P (W ′[n+ 1]) {P from (14)}
F [n+ 1]← F (W [n+ 1])

n← n+ 1

Return: W ∗ = W [n]

su,k =
∑
r

qu,r,k · log(1 +
∑

p∈Pr,u

θp,k · |x′p|), (11)

where qu,r,k is from (9) and x′p, θp,k are the sequence of words
and post-topic distributions from Sec. III-B1. The inclusion of
text length |x′p| here captures the fact that longer posts tend to
contain more information; despite the fact that MOOC users
make only 5-10 posts each on average [4], these estimators can
still reveal substantial differences in tendencies between users,
as we will see in Sec. IV-B. In the case of du,k, intuitively,
more information in text containing topic k should increase u’s
disseminating tendency on k. In the case of su,k, it implies
that the user is willing to spend more time on k. We employ
log again to capture diminishing returns with higher post size.
SIDR and DISR (Φ̂ and Ψ̂): Out of the quantities needed in
(6) and (7), we now have methods to infer S, D, and Ŵ . Only
Φ̂ and Ψ̂ remain, which can now be obtained from (2) and (3)
using Ŵ , S, and D.

C. Solving for the Optimal Network (W ∗)

The final component to develop is the algorithm to solve
(6) for W ∗. As (6) is convex, it can be solved numerically in
theory by standard algorithms such as interior point methods.
We approach the solution otherwise for two reasons. First
is an issue of scalability: the number of variables in our
problem is |U| × (|U| − 1); with just 1K users (which is on
the order of the smallest dataset in Table I), there are already
almost 1M variables, which makes these standard methods
computationally intractable [10]. Second is non-uniqueness:
the problem can have multiple optimal solutions, as discussed
in Sec. II-C. We desire a method that will obtain the W ?

I

closest to Ŵ , to minimize the impact on user behavior.
To force W ?

I , we replace the objective in (6) with the
following g̃αu(W ), introducing a regularization term:

g̃αu(W ) = gαu(W )− λ‖W − Ŵ‖F , (12)

where ‖W − Ŵ‖F can be regarded as a convex loss function
which penalizes solutions that are far from the observed user-
to-user network Ŵ .8 Then, for a scalable solver, we derive
a projected gradient descent method for the optimization
problem. In this method, three steps are repeated in sequence:
Gradient, Projection, and Objective. The pseudocode is given
in Algorithm 1, and the individual steps are as follows:

8Other standard convex loss functions are also possible; the effect is on the
step size in gradient descent, which must be chosen for convergence [17].
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k fk(%) argmaxxβk,x k fk(%) argmaxxβk,x

1 5.72 grad theta1 theta2 6 8.84 train set data
2 8.48 time data learn 7 12.2 vector matrix loop
3 9.84 octav file error 8 14.8 code problem work
4 8.12 theta function sum 9 13.4 learn machin class
5 10.6 featur data regress 10 8.03 cost theta function

(a) ml

k fk(%) argmaxxβk,x k fk(%) argmaxxβk,x

1 14.8 write writer school 6 12.7 project feedback submit
2 3.93 imag expertis pictur 7 7.49 practic coyl talent
3 10.8 argument paragraph expertis 8 5.36 live world love
4 10.3 write time idea 9 12.7 english write languag
5 16.4 write read writer 10 5.57 work peopl educ

(b) comp

k fk(%) argmaxxβk,x k fk(%) argmaxxβk,x

1 9.62 array sort element 6 12.0 time python run
2 9.02 hash heap function 7 7.60 number find min
3 4.84 int arr integ 8 9.67 log number time
4 15.1 test answer code 9 16.5 algorithm program problem
5 6.13 point group studi 10 9.52 edg node graph

(c) algo

k fk(%) argmaxxβk,x k fk(%) argmaxxβk,x

1 16.2 shakespear read play 6 14.6 read shakespear post
2 10.6 romeo juliet love 7 4.26 beatric benedick strong
3 7.39 shakespear hamlet play 8 17.1 play word shakespear
4 7.19 love hermia play 9 6.25 light night scene
5 9.6 play version film 10 6.84 dream word love

(d) shake

TABLE II: Summary of the topics extracted by LDA for each course, with |K| = 10. Given for each k are the support fk and the highest
three constituent words x. We see that the topics are representative of likely discussions given the course context, and that they tend to be
non-overlapping, with the exception of certain, obvious words.

(a) ml (b) comp

(c) algo (d) shake

Fig. 2: Distributions of seeking (su,k) and disseminating (du,k) tendencies inferred for each dataset, for the two topics k with maximum
support for each course (see Table II). In each box, we only consider non-zero values of du,k and su,k. From this sample, we can see that
the du,k tend to be slightly larger than the su,k, but that they are on the same order, implying there is typically sufficient disseminating
tendency to match the questions posted on the topics, if it is allocated efficiently.

1) Gradient step: Here, the gradient of (12) must be
computed with respect to each wu,v . It is easy to show that

∂g̃

∂wu,v
=

1

|U|
∑
k

(
du,ksv,k

1 +
∑
i wi,vdi,k

+
αudu,ksv,k

1 +
∑
j wu,jsj,k

)
−λ wu,v

‖W − Ŵ‖F
.

(13)
In Algorithm 1, the procedure moves in the direction of the
gradient ∇g̃ in each iteration, by the step size γ[n], which is
selected via backtracking line search [17].

2) Projection step: The solution from the gradient update
is then projected onto the feasible region of (6). Since the
constraints are affine, this problem can be cast as a linearly-
constrained quadratic program. Formally, with W ′ as the
matrix of variables before projection, we solve:

minimize
W

||W −W ′||2F ,

subject to Constraints (6b)-(6d).
(14)

We derive an alternating direction method of multipliers
(ADMM) algorithm to solve (14); details of that are given in
App. B available as online supplementary material. Note that
since the constraints in (6) are linear, ADMM has convergence
guarantees [18], whereas it would not if we had bounded the
concave benefit terms bu,k directly in (6b) as discussed in Sec.
II-C. In Algorithm 1, the function P refers to solving (14).

3) Objective step: Finally, the objective g is re-computed
for the updated W . The algorithm terminates once the percent
change in g between two successive iterations is below a small
threshold T .

IV. DATASETS AND RESULTS

In this section, we evaluate the efficiency of four MOOCs,
and compare the properties of the observed and optimal SLN.

A. Datasets

We obtain our datasets from the MOOC provider Coursera.
Since other MOOC platforms use the same forum structure,
our methods are generally applicable to them as well.

1) Data collection: We coded crawling infrastructure that
uses the selenium library in Python to collect data from
a course’s forum. We also wrote a parser that uses the
beautifulsoup library in Python to extract the following
information from each HTML page: the thread title, and for
each post in the thread, the user ID, timestamp, and text
created. The results were saved as text files.

2) Courses: We chose four MOOCs for analysis: “Machine
Learning” (ml), “English Composition I” (comp), “Algo-
rithms: Design and Analysis, Part 1” (algo), and “Shake-
speare in Community” (shake). We picked two courses
that are technical in nature (ml and algo) and two on
the humanities side (comp and shake), to obtain a diverse
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(a) Varying αm. (b) Varying σ.

Fig. 3: Efficiency measures as (a) the teaching benefit αm and (b) the smoothing factor σ are varied. In (a), we see that the ηg efficiencies
are always below 0.9, highlighting the potential gains through optimization. This holds despite there being some variations in efficiency
depending on what is taken as the true value of αm. In (b), we see that as σ increases, the networks tend to become more efficient, indicating
that improvement can be obtained in global utility if users are more impartial in responding.

(a) Varying αm. (b) Varying σ.

Fig. 4: Global utilities as (a) the teaching benefit and (b) the smoothing factor vary. The ratios between the observed ĝ and optimized
g? global utilities in (a) correspond to the plots of ηg in Fig. 3(a). αm and σ both have a more profound impact on global utility in the
humanities courses, which indicates that learners benefit from sharing information across broader networks of peers in this type of course.

sample with respect to subject matter. The sessions of these
MOOCs that we used were all publicly-accessible and had
passed the final exam date listed on the syllabus in June 2015.
Table I gives basic information on them including the number
of users, threads, and posts; the large total numbers of posts
but relatively small average number of posts per user – ranging
from 4.4 to 7.8 – are typical of MOOCs [4]. As discussed in
Sec. I, small participations of individual users is one of the
challenges to optimizing SLN efficiency in MOOCs.

B. Extracting Topics and Q&A Tendencies

Two of the key steps prior to optimization are (1) topic
extraction and (2) inference of the topic-wise seeking and
disseminating tendencies. Here, we briefly analyze the results
from these steps before moving to efficiency evaluation.

1) Topics K: We implemented LDA using collapsed Gibbs
sampling, through the lda library in Python. We empirically
varied the number of topics for each dataset, and inspected
(i) the highest constituent words arg maxxβk,x and (ii) the
support fk =

∑
n θn,k/|N | across the resulting topics with

each choice of |K|. We found that |K| = 10 obtained both a
reasonably high support fk across topics (i.e., ensuring each

topic is well represented across posts) and reasonable disparity
among the top words (i.e., ensuring each topic is different).

Table II gives a summary of the results for each dataset, with
the three words having highest fk shown for each k. From the
top three words, we see that the topics (i) are representative of
likely discussions for each course (e.g., k = 2, 3, 7 in shake
are about specific Shakespeare plays, and k = 3, 10 in algo
are about data types and graphs, respectively), and (ii) are
reasonably non-overlapping, with the exception of ubiquitous
course words (e.g., “write” in comp, “number” in algo).

2) Seeking S and disseminating D tendencies: With the
topics K identified and the qu,r,k computed as in Sec. III-B2,
we can infer the du,k and su,k from (10)-(11). As a sample, in
Fig. 2, we plot the distributions across users for the two topics
in each course that have highest fk (see Table II), considering
the non-zero values only. For the 40 topics across the courses
(8 shown), we make a few observations. For one, we notice
that the du,k values tend to be shifted to the right relative to
the su,k; in particular, the median is higher in 29/40 cases,
and in 5/8 of the cases in Fig. 2. This indicates that there
is higher disseminating tendency overall, consistent with the
observation in Sec. III-B2 that there are more answer posts
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(a) Varying Cd. (b) Varying Cs.

Fig. 5: Global utilities as (a) the disseminating parameter and (b) the seeking parameter vary. By dropping Cd, users are able to participate
more, and we see in (a) that the optimization is able to leverage that additional dissemination to obtain more improvement. By increasing
Cs, users may get more responses to their questions than before, but we see in (b) that this does not affect the global utility. Having a few,
high quality sources is sufficient.

than question posts. However, su,k and du,k do tend to be
on the same order; the ratio of the medians is less than 2
in 31/40 cases. This indicates that while there is enough
dissemination overall, it needs to be allocated intelligently
to meet the seeking tendency. Our efficiency evaluation will
quantify how well the observed SLN perform in this regard.

Before proceeding, we remark that the inferred topics
(e.g., in Table II) and distributions of seeking/disseminating
tendencies (e.g., in Fig. 2) could serve as useful analytics
for a course instructor in their own right. It would allow the
instructor to see which topics in his/her course have the highest
disparity between disseminating and seeking tendencies, and
which discussion words tend to make up these topics. With
this, the instructor could devise interventions for the course
that would benefit the students.

C. Efficiency Evaluation

We now move to the optimization evaluation and results.
Parameters. Referring to (6) and (7), there are four parame-
ters: αu, Cs, Cd, and σ. αu, the marginal benefit of teaching
relative to learning for user u, depends on several factors and is
likely user-dependent. As a result, we treat αu ∼ U(0, αm) as
a uniform random variable over (0, αm), where αm ∈ [0, 1]
is chosen so that learning benefit is at least as high as the
teaching benefit. We set αm = 0.4, the smoothing factor
σ = 0, and the tightness parameters Cs = 1.25 and Cd = 0.75
by default; each of these values will be swept across suitable
values in the evaluation to analyze their effects.
Implementation. In Algorithm 1, each step was coded de-
novo in Python. The simulations were run across six machines,
each with 12 cores and 32 GB RAM. Due to the random nature
of αu, each choice of parameters was averaged over multiple
simulation runs. We fix λ = 0.1 and T = 0.01.
Results. Fig. 3(a) shows two efficiency measures, ηg and ηF ,
as αm is varied. ηg is the actual efficiency based on global
utility g from (7), while ηF is the ratio based on the full
objective function (12), given for completeness. Fig. 4(a) plots
the corresponding observed and optimized values of g. Fig.
3(b) shows how the efficiency ηg of the observed network

Ŵ (σ) varies with σ, and Fig. 4(b) gives the corresponding
global utilities. Finally, Figs. 5(a) and (b) show how varying
Cd and Cs affect the global utility in the optimized network.9

These graphs are the subject of the following discussion.
1) Low efficiency SLNs: Referring to Fig. 3(a) and Fig.

4(a), for each dataset we can see that the observed SLNs have
low efficiencies, i.e., they obtain substantially less global utility
than the optimal. This is true regardless of what is taken as
the true teaching benefit αm for each course: the highest of
ηg = 0.90 is obtained by shake with αm = 0.8, while the
lowest of ηg = 0.76 is obtained by comp with αm = 0.2.
From these results, we see that much can be gained through
optimization; in Sec. IV-D3 we will see that local utilities are
not substantially penalized in the process either. Also, ηF is
consistently higher than ηg in Fig. 3(a), which is consistent
with the regularization parameter λ in (12) being 0 at W = Ŵ ;
deviations from W are penalized in the objective, thus giving
insight into how far W ? is from Ŵ .

2) Higher efficiency SLNs for more smoothing: Referring to
Fig. 3(b), we see that as the smoothing parameter σ increases,
the SLNs in each course gain in efficiency. Once σ = 1, ηg

has reached between 0.91 (for algo) and 0.94 (for shake).
Given that larger σ in (8) has the effect of spreading the
observed, overall response rate of user u more uniformly
across other users v (i.e., equalizing the ŵu,v across v), this
indicates that SLNs where users respond impartially across
neighbors tend to be more efficient. However, across datasets
except for shake, there is at least an 8% gap between the
smoothened SLNs and the optimal solution, indicating there
is still substantial room for improvement through optimization.

3) Utility gains in humanities courses: As αm is increased
in Fig. 4(a) to factor in teaching benefit, the global utilities –
both ĝ and g? – increase as well, as expected from (1). This
increase is more pronounced for shake and comp than for
algo and ml, though, especially for shake where g? rises
from 13 to 22. This implies that the “learning by teaching”
factor in (1) tends to be larger for the humanities than for the

9The minor variations in global utility for the observed network here are
due to the random samplings for αu.
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(a) Degree distributions, P (du ≥ d). (b) Edge weight distributions, P (wu,v ≤ w).

Fig. 6: Plots of (a) the outgoing degree distributions and (b) the edge weight distributions for observed and optimal networks. For each
dataset, we can see that optimization makes the distributions more uniform, with (a) less users having large outgoing degrees and (b) many
additional connections established between pairs of users.

(a) ml obs: 0.24 (0.056); opt: 0.41 (0.061) (b) comp obs: 0.41 (0.074); opt: 0.48 (0.089)

(c) algo obs: 0.14 (0.090); opt: 0.17 (0.097) (d) shake obs: 0.31 (0.136); opt: 0.35 (0.132)

Fig. 7: Distribution of the ratio of local to global utility, ru = lu/g, for the observed (obs) and optimal (opt) SLN in each course. The median
(med) and Jain’s Index (JI) of the plots are indicated in the caption, in the format: med (JI). Given that the JI do not change substantially,
we conclude that the optimization at least preserves the fairness of local utility.

technical courses, i.e., there is a higher match between users’
seeking tendencies su,k and the disseminating tendencies dv,k
of those responding. A similar trend is seen for the smoothing
factor in Fig. 4(b), where ĝ noticeably increases with σ in
the humanities but not the technical courses. Together, these
findings imply that learners benefit from sharing information
across broader networks of peers in the humanities courses.
This may be explained by the discussion-oriented nature of this
course type, as opposed to technical courses where learners
would tend to ask targeted questions with objective answers.

4) SLNs can leverage additional dissemination: In Fig.
5(a), we see that as the disseminating parameter Cd drops,
the gap in global utility between the observed and optimized
networks gets considerably larger, i.e., there is more room for
improvement. Recall that lower Cd in (6) allows users’ DISRs
to drop, which simulates the case that they can take on a larger
load of questions or that their individual capacities were under-
estimated. This implies that the optimized networks can take
advantage of additional disseminating capacity, especially in
the humanities courses. In Fig. 5(b), on the other hand, we
see that the seeking parameter Cs does not affect the gap over
this range of values. Recalling that a higher Cs allows users’
SIDRs to drop if needed, i.e., users’ may receive less answers
to questions, this implies that having more dissemination to
match the same seeking tendency does not tend to benefit
global utility. Having the strongest few answers is sufficient.

D. Network Comparison
Equipped with an understanding of efficiency in our

datasets, we now perform an exploratory analysis to discover
differences between the observed and optimal SLN. All pa-
rameters are set to the defaults stated at the beginning of Sec.
IV-C.10

1) More uniform degree distributions: We first compare
the degree distributions between the networks. To do so, we
consider there to be a “link” from user u to user v if and only
if u is expected to respond to v at least once. Formally, with
Nv as the number of times v posts, we define the adjacency
matrix A = [au,v], where au,v = 1 if wu,v × Nv ≥ 1, else
au,v = 0. With this, the (expected) outgoing degree of u is
du =

∑
v au,v; in other words, du is the number of unique

users that u is expected to respond to.
Fig. 6(a) plots the degree distributions P (du ≥ d) across

users for each network. Visually, we can see that optimization
tends to make the degrees more uniform, reducing the number
of users on the tail of the distribution. For example, in algo,
the proportion of users with du ≥ 30 is reduced from 28% to
15%, and in ml the proportion with du ≥ 50 is reduced from
6.4% to 2.9%. After optimization, there are more users with
du ≤ 20 for comp, du ≤ 15 for shake, and du = 1 for both
ml and algo than there were before.

10We observe the results to be qualitatively similar for other reasonable
choices of parameters too.
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(a) ml (b) comp (c) algo (d) shake

Fig. 8: Plot of the local utility lu for each user before (observed) versus after (optimized) optimization. The black line separates the regions
of increased (above) and decreased (below) lu. We can see that the majority of users have the same or higher local utilities in each case.

(a) ml (b) comp (c) algo (d) shake

Fig. 9: Plot of local utility lu against (expected) outgoing degree du for each of the datasets, before and after optimization. In each case
except comp, we can see that learners are on average able to obtain comparable lu for a lower du.

2) More uniform edge weight distributions: The process
of making the degree distributions more uniform involves
adjusting the weights wu,v through optimization. In Fig. 6(b),
we plot the CDF P (wu,v ≤ w) of the edge weights for each
dataset before and after this process.

Striking differences between the observed (Ŵ ) and opti-
mized (W ∗) SLN are apparent. In W ∗, a vast amount of
connections with w∗u,v > 0 have been established between
users, indicating that optimization causes the edge weights to
become more homogeneous. Considering Ŵ , there are roughly
73K and 66K non-zero weights for ml and shake, which is
only 0.40% and 7.2% of the potential user pairs in the network.
Considering W ? on the other hand, 5.54M (31%) and 427K
(47%) of the pairs are non-zero with w?u,v ≥ 0.001.

The distributions in Fig. 6 are also consistent with the find-
ing in Fig. 3(b) that smoothing generally improves efficiency.

3) Optimization preserves fairness: Setting the tightness
parameters Cs = 1.25 and Cd = 0.75 in (6) leaves the
potential of sacrificing individual local utilities lu at the
expense of maximizing global utility g. Here, we explore the
effect of optimization on the lu, by comparing the distributions
of ru = lu/g across users before and after; the ratio is taken
to account for the increase in global utility from optimization.

Fig. 7 gives boxplots of these values for each dataset. We
can see that the distributions of the optimal are shifted to the
right in each case, which indicates a tendency towards higher
local utilities. To analyze the effect on the spread, we consider
the fairness of the ru distributions through the standard Jain’s
Index (JI) metric.11 The JI values are given in Fig. 7; we see
that they do not change substantially after optimization for any
of the datasets (and actually increase by around 0.01 in comp,

11The JI on n values varies between 1/n and 1. Higher JI is more fair.

ml and algo). Therefore, we conclude that while improving
the global utility, optimization also preserves fairness in the
distribution of local utilities. This also verifies that our choice
of constraint (6b) to preserve incoming information rather
than bound local utility did not result in a negative impact
on individual users after optimization.

4) Increases in local utilities: We are also interested in the
differences between the local utilities lu before (i.e., l̂u) and
after (i.e., l?u) optimization, irrespective of g. In Fig. 8, we
plot the effect of optimization on the local utilities, where
each point is a user. Visually, it is apparent that optimization
preserves or improves local utility for the majority of users.
The percentage of users with l?u ≥ l̂u (i.e., at or above the black
line) is 74% for ml and 60% for comp. Only in shake is it
under 50%, but 52% of cases increase or drop by at most 4%.

In Fig. 6(a), we saw that optimization tends to make the
expected outgoing degree du more uniform. In Fig. 9, we
plot the local utility lu against du for each of the datasets,
comparing the observed and optimized SLNs in each case.
In ml, algo, and shake, we see visually that users are on
average able to obtain the same lu in the optimized network
with a smaller du. The average user in comp, however, obtains
lu = 9.0 with du = 7.5 after optimization, as opposed to a
lower lu = 7.3 from a lower du = 4.6 before optimization.

V. DISCUSSION AND FORUM
IMPLEMENTATION ALGORITHM

From the evaluation in Sec. IV, it is apparent that large
increases in global utility can be obtained by optimizing user
participation (Fig. 3). Importantly, this can be done without
affecting the spread of local utilities substantially, meaning
that fairness is preserved, and even improved (Fig. 7). To
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obtain these gains, the optimized network will take a more
homogeneous structure, with both the outgoing degree and
edge weight distributions becoming more uniform (Fig. 6).
The effect of this is a more connected community of users
with a more distributed workload, causing the local utilities of
the majority of users to increase (Fig. 8), and giving learners
the ability to obtain the same or higher local utility with lower
outgoing degree (Fig. 9).

These results imply that substantial improvements in learn-
ing efficacy can be gained in MOOCs – and online learn-
ing/education more generally – through SLN optimization.
This provides a means for combating the high attrition rates
and other adverse outcomes associated with scaling up learn-
ing [4], without incurring costs associated with adding addi-
tional instructors to each course. Certain analytics provided
by our methodology, such as the course topics (Table II) and
seeking/disseminating tendencies (Fig. 2), can also be used by
the instructors to themselves devise interventions for students.

As outlined in Sec. I, there are three steps involved in
improving SLN efficiency: (i) defining the ideal network, (ii)
solving for the optimal SLN, and (iii) realizing the optimized
network in practice. In presenting and evaluating our efficiency
methodology, the focus of this work has been on the first
two steps. The third step, which we leave mostly to future
work, can be broken down into the following main parts: (a)
designing an algorithm to recommend/enforce the optimized
interaction structure in an SLN, (b) adding the appropriate
UI/UX functionality to the web application hosting the SLN,
and (c) obtaining a large volume of users for experimentation
from an existing MOOC provider to measure the improve-
ments in learning outcomes from the optimization. While (b)
and (c) are out of scope here, we will next propose a solution
for (a) based on our optimization methodology; our choosing
of the solution closest to the observed network in step (ii) also
makes this less disruptive for users overall.

Since most online forums already provide a news feed to
direct user attention in an SLN to new or popular posts,
we propose to curate the news feed based on each user u’s
outgoing weights w∗u,v ∀v. This can be managed by updating
u’s news feed with a link to each new post created by v with
probability w∗u,v . Letting Cu = {p1, p2, ...} be the sequence
of posts shown on u’s page, Algorithm 2 shows one way the
feeds C = {C1, C2, ...} can be updated from the W ∗ when a
post q is made in thread r by user v at time tc. Here, each u
has a maximum number of posts cmax(u) to be displayed on
her feed, and T is the maximum time q (created at t(q)) can
be on the feed. The posts p ∈ Cu are prioritized according to
w∗u,v , where v = µ(p) is the creator of p. Also, given that the
observed SLN evolves over time, the W ? can be re-computed
at appropriate points (e.g., once a day).

A key challenge here is encouraging/ensuring users follow
the recommendations. It may be possible to design an incentive
structure (e.g., through awarding badges as in [3]) that rewards
students who abide by their news feeds, or to automatically
redirect the user to a post when the recommendation is made.
In other SLN scenarios where engagement is compulsory (e.g.,
in a classroom or in an enterprise social network [19]), it may
be possible to force users to follow the recommendations by

Algorithm 2 Updating news feed based on the optimal SLN.

Input: v, r, q ∈ Pr , C = {C1, C2, ...}, cmax, tc, T , W ∗

for u ∈ U \ v do
RM-LD(Cu, tc, T ) {RM-LD: remove any post p ∈ Cu with tc−
t(p) > T , i.e., outdated posts in Cu}
if U(0, 1) ≥ w∗u,v then

APPEND(Cu, q) {append new post q to u’s news feed Cu}
SORT(Cu, w∗u) {sort Cu descending ∀p ∈ Cu based on
w∗u(µ(p)), i.e., from highest to lowest w∗u,v}
if |Cu| > cmax(u) then

RM-ST(Cu) {RM-ST: remove the last (i.e., least relevant)
element from Cu}

Return: Cu ∀u {Updated news feed for each user u}

enforcing consequences for those who do not.

VI. RELATED WORK

Several studies on MOOCs have emerged in recent years.
Many of these have aimed to codify the learning process
through data-driven methodologies. Researchers have pro-
posed algorithms for clickstream data analysis [20], [21],
performance prediction [22], [23], community detection [24],
study partner recommendation [5], [25], and forum question
recommendation [9]; see also [2] for a survey of earlier works.

In this paper, we focus specifically on the discussion forum
aspect of MOOCs. Some prior work has analyzed the con-
tent of discussions [4], [7] while others have considered the
graph structure [8], [26] of the forums to gain insight into
user behavior. More specifically, [7] proposed an extension
of non-negative matrix factorization to characterize students
by learnt latent features using the text of forum posts. [8]
used social network analysis to identify significant interaction
networks among students, detect communication vulnerability,
and simulate the effect of information diffusion on an undi-
rected user-user graph. [26] provided a socio-semantic analysis
on users’ roles in an SLN according to their information-
giving relations, using bipartite graph modeling to identify
user similarities. Different from these works, our methodology
takes a unified view of the topic-specific content and structural
aspects of MOOC forums, and models the flow of information
between users as a directed graphical process.

Our work is also unique in that we propose methodology to
optimize student interactions. Recent empirical analysis [27]
has highlighted the potential for improving MOOC learning
efficacy from a network perspective. Also, the analysis in [28]
observed the uneven distribution of interactions between core
participants and other users in an SLN; our work indicates
that these uneven distributions are indeed suboptimal. The
methodology we propose is perhaps most related to that in
[9], in which the authors propose a method for optimizing the
allocation of users to questions, but ignore the specific content
of each question and make the implicit assumption that a user’s
participation implies expertise. The methodology we develop,
by contrast, infers both question and answer tendencies of
each user over a multidimensional topic space. Further, we
choose to discover topic distributions through natural language
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processing, in light of works [4], [29] showing that human
identification of topics may fail to capture important discus-
sions.

A plethora of studies exist for Online Social Networks
(OSN) more generally. Information propagation and efficiency
in OSNs has been studied in e.g., [30], [31] for public social
networking/blogging, [19], [32] for enterprise social networks,
[10], [33], [34] for recommender networks, and [35], [36] for
human learning networks. As in [10], our work considers opti-
mization of local and global utilities, but considers constraints
specific to SLN such as multidimensional information spread.
The scale (up to 18M variables) and non-uniqueness of our
optimization also pose unique computational challenges over-
come in this work, through projected gradient descent/ADMM
and Frobenius norm regularization, respectively.

VII. CONCLUSION

The proliferation of online (human) learning in recent years
has rendered SLN an intriguing research area. We studied
an important topic pertaining to SLN: the efficiency of in-
formation exchange between users. To do so, we proposed a
methodology which compares the observed user benefit to that
which can be obtained in an optimized, ideal SLN. Through
our method, each user is modeled as possessing a certain
level of seeking (i.e., question asking) and disseminating
(i.e., question answering) tendency on a set of latent topics
forming the educational context of the SLN. We evaluated
efficiency on the discussion forums from four MOOC courses,
in which we compared the observed and optimal SLN along
a number of dimensions. For one, we saw that the efficiency
of the SLN is rather low, with much to be gained through
optimization. Also, in addition to improving global utility, the
optimal network surprisingly does not penalize the fairness
in the distribution of local utilities. The main step for future
work beyond the modeling and optimization presented here is
the implementation of a mechanism to enforce the optimized
network in a discussion forum during a course.
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APPENDIX A
PROOF OF NON-STRICT-CONCAVITY OF (6A) AND

NON-UNIQUENESS OF SOLUTIONS TO (6)

To prove that (6a) is not strictly concave, we seek to find
conditions under which, for two matrices X = [xu,v] and Y =
[yu,v] in the feasible region of (6), the concavity inequality

g(µX + (1− µ)Y ) ≥ µf(X) + (1− µ)f(Y ), µ ∈ [0, 1]

holds with equality. We have

g (µX + (1−µ)Y )

=
∑
u,k

su,k log

(
1 +

∑
v

(µxv,u + (1−µ)yv,u) dv,k

)
+
∑
u,k

αudu,k log

(
1 +

∑
v

(µxu,v + (1−µ)yu,v) sv,k

)
= log

∏
u,k

(
µ(1 +

∑
v

xv,udv,k) + (1−µ)(1 +
∑
v

yv,udv,k)

)su,k

×
(
µ(1 +

∑
v

xu,vsv,k) + (1−µ)(1 +
∑
v

yu,vsv,k)

)αudu,k

,

and

µg(X) + (1−µ)g(Y )

=µ
∑
u,k

(
su,klog(1+

∑
v

xv,udv,k)+αudu,klog(1+
∑
v

xu,vsv,k)

)
+ (1−µ)

∑
u,k

(
su,k log(1+

∑
v

yv,udv,k)

+ αudu,k log(1+
∑
v

yu,vsv,k)

)
= log

∏
u,k

(
(1 +

∑
v

xv,udv,k)µ · (1 +
∑
v

yv,udv,k)1−µ
)su,k

×
(

(1 +
∑
v

xu,vsv,k)µ · (1 +
∑
v,k

yu,vsv,k)1−µ
)αudu,k

.

By the weighted AM-GM inequality, the inequalities

µ(1 +
∑
v

xv,udv,k) + (1− µ)(1 +
∑
v

yv,udv,k)

≥ (1 +
∑
v

xv,udv,k)µ · (1 +
∑
v

yv,udv,k)1−µ,

and

µ(1 +
∑
v

xu,vsv,k) + (1−µ)(1 +
∑
v

yu,vsv,k)

≥ (1 +
∑
v

xu,vsv,k)µ · (1 +
∑
v

yu,vsv,k)1−µ

hold with equality if (and only if)
∑
v xv,udv,k =

∑
v yv,udv,k

and
∑
v xu,vsv,k =

∑
v yu,vsv,k ∀u, k, respectively. Thus, g

is not strictly concave.
We then prove that if X? is an optimal solution, there exists

another optimal solution Y ?. We suppose two vectors a and
c such that aT c = 0 (i.e., diag(acT ) = 0), DTa = 0,

and ST c = 0, and we show that there exist such a and
c. By observation, a and c are left nullspaces of D and S
with dimensions N − rank(D) and N − rank(S) respectively,
i.e., both are N − K > 2. Thus, there are more than one
vectors in a basis of each of their nullspaces. Supposing
N (DT ) ∈ RN×(N−K) and N (ST ) ∈ RN×(N−K) are bases
of left nullspaces of D and S, respectively, we define two
vectors

a′ =

N−K∑
i=1

λiNi(DT ) = N (DT )Tλ

and

c′ =

N−K∑
i=1

νiNi(ST ) = N (ST )T ν

with λ, ν ∈ RN−K . We then have

a′T c′ = λTN (DT )N (ST )T ν.

Here, note that rank(N (DT )N (ST )T ) = N − K. The
N (DT )N (ST )T has the singular decomposition with

N (DT )N (ST )T = UΣV T ,

where Σ is a diagonal matrix and U and V are both unitary
matrix, i.e., UTU = V TV = I . We also define λ = Uλ′ and
µ = V µ′, satisfying λ′i = 0 if ν′i 6= 0, λ′i 6= 0 if ν′i = 0,
‖λ‖0 ≥ 1 and ‖ν‖0 ≥ 1 so that a′T c′ = λ′Tµ′ = 0. Now, to
ensure Y ? = X? + acT ∈ [0, 1]|U|×|U|, acT is given by

acT =
1

max
a′ic

′
i 6=0,Xij 6=0,1

a′ic
′
i

min{1−Xij , |Xij |}

a′c′T

Since any Y ? = X? + acT ∈ [0, 1]|U|×|U| would satisfy
diag(Y ?) = 0, Y ?T d = X?T d ≥ s, and Y ?s = X?s ≤ d,
Y ? is another optimal solution.

APPENDIX B
ALGORITHM FOR THE PROJECTION STEP

We now detail our proximal gradient-within-ADMM al-
gorithm to perform the projection step, i.e., to solve the
proximal problem defined in (14). The problem can be written
equivalently as

minimize
W

1

2
‖W − Ŵ‖2F ,

subject to −DTW + P ≤ 0,

WS −Q ≤ 0,

0 ≤W ≤ 1, diag(W ) = 0,

where the |K| × |U| matrix P is given by P = S/(CsΦ̂),
and the |U| × |K| matrix Q is given by Q = D/(CdΨ̂). The
inequalities and the division operators operate entry-wise on
the corresponding matrices.

Since there are multiple constraints on W , we resort to the
ADMM method [18], which enables us to keep multiple copies
of variables in order to reduce each sub-problem to an easier
problem with a single set of constraints. Concretely, we rewrite
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the above optimization problem as the following

minimize
W

1

2
‖W − Ŵ‖2F ,

subject to −DTW + P = Z1,WS −Q = Z2,

Z1 ≤ 0, Z2 ≤ 0,

0 ≤W ≤ 1, diag(W ) = 0.

The augmented Lagrangian of this equivalent problem is given
by

L(W,Z1, Z2,Λ1,Λ2) =
1

2
‖W − Ŵ‖2F

+
ρ

2
‖−DTW+P−Z1+Λ1‖2F +

ρ

2
‖WS−Q−Z2+Λ2‖2F ,

where Λ1 and Λ2 are the Lagrange multiplier variables for the
two inequality constraints, and ρ > 0 is a (suitably chosen)
scaling parameter. We start by initializing W as Ŵ , Z1, Z2,
Λ1, and Λ2 as all-zero matrices, and in each ADMM iteration,
we perform the following updates for each variable, until
convergence:

a) W update: We solve the following sub-problem

minimize
W

h(W ) =
1

2
‖W − Ŵ‖2F

+
ρ

2
‖ −DTW + P − Z1 + Λ1‖2F

+
ρ

2
‖WS −Q− Z2 + Λ2‖2F ,

subject to 0 ≤W ≤ 1, diag(W ) = 0.

We solve this problem using a proximal gradient algorithm
[17], i.e., in each inner iteration, we perform a gradient step
followed by a projection step, until convergence. The gradient
step given by

W ←W − τ∇Wh(W ),

where ∇Wh(W ) = W − Ŵ + ρD(DTW − P + Z1 − Λ1) +
ρ(WS −Q− Z2 + Λ2)ST . The projection step is given by

W ← max{min{W − diag(diag(W )), 0}, 1},

where max and min denotes element-wise maximum and min-
imum operators. We select the step-size τ using backtracking
line search [17].

b) Z update: The subproblems for Z1 and Z2 are trivial;
the updates are given by

Z1 ← max{−DTW + P + Λ1, 0},

and

Z2 ← max{WS −Q+ Λ2, 0}.

c) Λ update: The Lagrangian multiplier matrices Λ1 and
Λ1 updates are given by

Λ1 ← Λ1 −DTW + P − Z1,

and

Λ2 ← Λ2 +WS −Q− Z2.

Note that this ADMM algorithm has convergence guarantees
since the constraint set is linear [18].


