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Abstract—In this paper, we develop Predictive Learning Ana-
lytics (PLA) methodology for learner video-watching behavior in
Massive Open Online Courses (MOOCs). After defining features
to summarize such behavior from clickstream measurements, we
perform a statistical analysis of a real-world MOOC dataset
and uncover several interesting relationships between the dif-
ferent features. Motivated by this analysis, we propose three
algorithms for predicting future video-watching behavior, which
incorporate biases for learners and videos, collaborative filtering
across videos, and regularization to reduce overfitting. Through
evaluation on our dataset, we find that the predictors obtain
low RMSE overall, and that augmenting the bias predictor
with either collaborative filtering or regularization improves
prediction quality in eight out of nine cases.

I. INTRODUCTION

Massive Open Online Courses (MOOCs) have spread access
to education worldwide, allowing anyone with an Internet
connection to take courses from providers such as Coursera,
Udacity, and Udemy. Despite the conveniences they offer, the
lower completion rates and engagement levels of MOOCs as
compared with traditional courses have been the subject of
criticism [1]. This has in turn motivated research aimed at
improving the quality of learning in these courses, such as
through content analytics and automated personalization [2].

Predictive Learning Analytics (PLA) is a particular subset
of this research concerned with deriving analytics from data
collected about learners as they take courses. This data ranges
from performance-based measures like quiz question responses
to behavior-based measures such as clickstream actions on
lecture videos. The goal of PLA is to provide instructors with
intelligence on how learning experiences in a course may be
improved, both for individual learners and for overall courses.
A common example is the use of prior quiz performance data
to predict how a new group of learners may perform on a quiz.
If the predicted scores are deemed inadequate, the course can
be modified.

Beyond quiz performance, PLA for how learners may
interact with course content can provide fine-granular insights
into what particular content may benefit from modification or
adaptation [2]. For example, if it is estimated that a learner
will pause and rewind in a lecture video significantly more
than average, the learner may benefit from viewing a more
rudimentary version first. On the other hand, if a high average
playback rate and several fast forwards are predicted, then the
learner could be recommended/directed to the key parts.

Motivated by this, we ask the following two questions in
this paper: Do statistical patterns exist in the ways learners
watch lecture videos? If so, can a learner’s behavior in a future
course video be predicted from prior behavior?

A. Related Work

Prior work on PLA for MOOC has focused mainly on
modeling learning outcomes, e.g., quiz scores or knowledge
transfer. Algorithms have been developed to predict how
learners will perform on particular assessments [3], [4], how
average grades will change over time [1], [5], whether learners
will drop out of the course [6], [7], and whether they will
obtain certificates [8], [9]. Different from these, our work is
focused on more fine-granular predictive analytics for how
learners behave in learning modules (course videos).

In this regard, a few works have studied learner behavioral
data in MOOCs, including video-watching clickstream mea-
surements and Social Learning Network (SLN) interactions.
Some have focused on an exploratory analysis of such data and
its associated analytics, e.g., [10] modeled transitions between
learning activities and [11] quantified parameters to summarize
learner behavior in an SLN. Others have developed predictors
for learning outcomes in MOOCs based on behavioral data
[4], [7], [6], [12], [1]. More specifically, [7], [12] mined click-
stream actions for recurring subsequences of learner behavior
(e.g., reviewing the same content several times) associated
with quiz performance and/or course completion, while [4],
[6], [1] defined intuitive sets of features that summarize
behavior (e.g., fraction of time playing a video) and used those
to predict outcomes. Our work is perhaps most similar to [4],
[1] in that we use similar sets of human-crafted features, but
we are focused on predicting future behavior (i.e., the feature
values themselves) rather than eventual outcomes.

B. Our Methodology and Contributions

In this paper, we develop novel PLA methodology for
predicting future learner video-watching behavior. To do so,
we use a dataset of roughly one million clickstream events
generated by learners watching 92 videos in a MOOC.

We begin in Section II by describing our dataset and
the machine learning features that summarize each learner’s
video-watching behavior. In doing so, we perform a statistical
analysis of the features which leads to several insights both
for the development of our behavioral prediction algorithm and
for instructor analytics. For example, we identify a significant



negative association between the fraction of a video a learner
completes and most of their other behaviors exhibited on the
video, i.e., those who complete more content also tend to spend
less time on it overall, which can inform content changes.

Then, in Section III, we propose the predictors for learner
video-watching behavior. Given the significant findings from
our linear regression in Section II, we start with least-squares
bias predictors that includes biases for each learner and each
video with respect to each feature. We then introduce nearest-
neighbor-based collaborative filtering on the errors produced
by the bias predictor on the training set, and finally a reg-
ularization method to prevent overfitting. In evaluating the
predictors in terms of RMSE on the evaluation set, we find
that regularization and leveraging similarities between videos
improves our initial least-squares bias prediction model on four
out of nine features.

II. FEATURES AND DATASET

After introducing our dataset (Sec. II-A) and features (Sec.
II-B), we perform a statistical analysis (Sec. II-C) to derive
instructor analytics and motivate our predictors in Sec. III.

A. Course Dataset

The dataset we use was collected during our fall 2012
MOOC offering of “Networks: Friends, Money, and Bytes”
(NFMB) on Coursera [13]. This course consists of 92 lecture
videos across 20 lectures, with a quiz ending each video.

A total of 3,976 learners appeared in the dataset. However,
the number of videos that learners watched varied greatly
due to the inherent dropoff rates of MOOCs [14]. In total,
we ended up with 29,304 unique learner-video pairs (i.e.,
instances of a learner watching a video).

Coursera (and other MOOC platforms) records user inter-
actions with lecture videos as clickstream events. Each time
a learner makes an action on the video – play, pause, skip,
playback ratechange, exit, and so on – the action is recorded
along with its timestamp, playback position, and user/video
identification information. Roughly one million events were
generated across the user-video pairs in this dataset.

B. Feature Specification

For each learner-video pair, we compute nine machine
learning features based on the clickstream events. We omit
the exact formulas for brevity, referring the interested reader
to [1] for similar derivations. The features, and the intu-
itions/interpretations behind their values, are as follows:

1) Fraction completed (fracComp): The percentage of the
video that the learner watched. Repeated segments are not
counted more than once, so it must be between 0 and 1.
FracComp is a rudimentary indicator of a learner’s engagement
level with a video.

2) Fraction spent (fracSpent): The amount of (real) time
the learner spent on the video (i.e., while playing or paused)
divided by its total playback time. It compares the total time
the learner devoted to watching the video to the length of the
video itself, so it can take values greater than 1. FracSpent

TABLE I
AVERAGE AND STANDARD DEVIATION OF THE VIDEO-WATCHING

BEHAVIORAL FEATURES, COMPUTED OVER ALL LEARNER-VIDEO PAIRS.

Feature X Mean X̄ St. dev. sX
fracSpent 0.895 0.461
fracComp 0.767 0.340
fracPlayed 0.985 3.723
fracPaused 0.370 0.756
numPauses 2.825 59.100

avgPBR 1.104 0.315
stdPBR 0.014 0.050

numRWs 2.238 15.564
numFFs 1.567 6.369

also conveys how much time it took a learner to digest the
material presented, and is therefore a reflection of the clarity
of the presentation and content difficulty. An abnormally high
fracSpent value could also indicate that the learner engaged in
off-task behavior.

3) Fraction played (fracPlayed): The amount of the video
that the learner played, with repetitions, divided by its total
playback time. Unlike fracComp, fracPlayed counts repeated
segments more than once, and thus can take values ≥ 1.

4) Fraction paused (fracPaused): The amount of time the
learner spent paused on the video, relative to its total playback
time. It is possible for fracPaused to take values greater than
1. Larger values of this feature can convey that the learner
exhibited additional effort to internalize the material, although
an unusually high fracPaused probably indicates the learner
was engaged in off-task behavior.

5) Number of pauses (numPauses): The number of times
the learner paused the video. Similar to fracPaused, this
feature is an indicator of the additional effort the learner
exhibited to internalize the material. Further, an abnormally
high numPauses could indicate that the presentation of the
material is unclear, or that the content is too difficult.

6) Average playback rate (avgPBR): The time-average of
the playback rate that the learner had selected while in the
playing state.1 Analysis of avgPBR could indicate whether
the material was presented too fast or too slow for learners.

7) Standard deviation of playback rate (stdPBR): The
standard deviation of playback rates selected by the learner
over time.

8) Number of rewinds (numRWs): The number of times the
learner skipped backwards in the video. A higher value of this
feature indicates the learner exerted more effort to understand
the material. Easier material may have smaller numRWs.

9) Number of fast forwards (numFFs): The number of
times the learner skipped forward in the video. A higher value
in the presence of low fracComp indicates the learner felt
this content unnecessary. Material that learners were already
familiar with would tend to have higher numFFs.

C. Statistical Analysis
With the features defined, we now perform a statistical

analysis to gain insight into learner video-watching behavior.

1The player on Coursera allows rates between 0.5x and 2.0x the default
speed, in increments of 0.25x.



(a) fracComp (b) fracPaused (c) numRWs (d) numFFs

Fig. 1. Evolution of average feature values X̄(v) over videos v. Overall, several videos v deviate substantially from X̄ , implying that videos have unique
biases with respect to behavior that we can leverage in the development of our predictors in Section III.

(a) fracComp (b) fracPlayed (c) numPauses (d) stdPBR

Fig. 2. Variation of average feature values X̄(u) over learners u. Overall, several learners u deviate substantially from X̄ , implying that learners have unique
biases with respect to behavior that we can leverage in the development of our predictors in Section III.

Statistics across learners and videos. Table I gives the
mean X̄ and standard deviation sX of each feature X ,
computed over all learner-video pairs excluding outliers.2 A
mean fracComp of 0.767 indicates that on average, learners
visited about 75% of the content in videos and were thus well
engaged overall. The mean fracSpent and fracPlayed confirm
this, with values close to 1. At the same time, fracPaused,
numPauses, and numRWs indicate that learners tended to
spend a significant amount of time reflecting on material:
they paused for about 40% of the length of the videos, while
pausing and rewinding about 3 and 2 times respectively on av-
erage per video. This may indicate that the material presented
was challenging overall, further supported by numRWs being
greater than numFFs on average. Videos with higher-than-
average values for the numRWs and numPauses features could
be flagged as challenging and instructors could be directed to
simplifying or better explaining them.

On the other hand, avgPBR indicates that if learners
changed the speed of video playback at all, it tended to be
increased. Learners may be recommended to slow their speed
if necessary.
Statistics by video. We are interested to see how the feature
values change by video, as we expect that different videos
induce different behavior. Figure 1 plots the evolution of the
average X̄(v) over the videos v for four representative fea-
tures, compared with the global mean X̄ . Overall, we see that
several videos v deviate substantially from X̄ , indicating that
videos may have unique behavioral biases. We will leverage
this in the development of our predictors in Section III.

2Outliers were particularly present in fracSpent and fracPaused: when
learners become distracted, pause, and return to the video much later, they
will naturally register much larger-than-normal time spent in the paused state.

More specifically, we make a number of interesting findings
from Figure 1. First, as the course progresses, many of the
features associated with learner engagement like (a) fracComp,
(b) fracPaused, (c) numRWs, and (not shown) fracSpent each
tend to decrease. This is surprising as we would expect
learners who have not yet dropped out of the course to be
more motivated, and thus to exhibit higher engagement. One
possible conclusion, then, is that the content itself tends to
become less engaging, or more difficult to grasp, as the course
progresses. Instructors could use such information to identify
the set of videos that do not meet learner expectations and
work to improve their content and delivery.

In particular, the fracComp feature experiences an abruptly
large drop in videos 42-44. Learners may be choosing to not
complete or skip over a substantial amount of content here for
reasons that the instructor can address. On the other hand, frac-
Paused exhibits an abruptly large increase for videos 18-19,
which may imply that this material is particularly challenging
and requires additional explanation from the instructor.

For numRWs and numFFs, there is no distinct trend or
abrupt deviations for particular videos. The variance around
X̄ is large, however, a point which also manifested itself in
Table I. The fact that each video tends to be far from the
global mean indicates that bias values may work particularly
well in predicting these features. This point will be reinforced
in Section III when we see that collaborative-filtering-based
prediction does not improve performance as much as expected
due to these large biases.
Statistics by learner. Similarly, we are interested in how
the feature values change across learners. To investigate this,
we take the 208 learners who watched at least 30% of the
videos and calculate their average feature values X̄(u). Four
representative features are plotted in Figure 2. Overall, as with



TABLE II
MULTIVARIATE LINEAR REGRESSION COEFFICIENTS FROM FITTING EACH FEATURE TO THE OTHERS (ROWS ARE TARGET VARIABLES, COLUMNS ARE

INDEPENDENT VARIABLES). COEFFICIENTS WITH A STATISTICALLY SIGNIFICANT p ≤ 0.05 ARE MARKED IN BOLD.

Feature fracSpent fracComp fracPlayed fracPaused numPauses avgPBR stdPBR numRWs numFFs
fracSpent - -0.03674 -0.01748 0.00400 0.00019 -0.02688 -0.00581 -0.00116 -0.00982
fracComp -0.01943 - 0.63652 -0.02982 -0.06065 0.12973 -0.04763 -0.21779 -0.06057
fracPlayed -0.00870 0.59933 - 0.02567 0.15506 0.11627 0.01726 0.28166 -0.07545
fracPaused 0.00400 -0.05641 0.05157 - 0.03605 -0.00208 0.01040 -0.02419 0.01810
numPauses 0.00018 -0.10206 0.27709 0.03208 - -0.06885 0.03783 0.18274 0.00670

avgPBR -0.02199 0.20078 0.19111 -0.00170 -0.06333 - 0.23827 -0.05171 0.08849
stdPBR -0.00542 -0.08403 0.03235 0.00970 0.03966 0.27156 - -0.00349 -0.00808

numRWs -0.00076 -0.26960 0.37027 -0.01583 0.13443 -0.04135 -0.00245 - 0.42411
numFFs -0.00736 -0.08585 -0.11356 0.01356 0.00564 0.08103 -0.00648 0.48559 -

the videos, we see that many of the learners deviate from X̄
substantially, motivating learner biases in the predictors.
Linear regression. Finally, we investigate whether general
relationships between the features exist. We do this through
a series of multivariate linear regressions, one per feature. In
each regression, one feature is treated as the target variable
and all others as independent variables, using data from the
535 learners who watched at least 15% of the videos. Table
II gives the learned coefficients, with each row corresponding
to a different regression. Coefficients that were statistically
significant (p-value below 0.05) are emphasized in bold.

These coefficients have several interesting implications. For
one, note that all features except fracPlayed and avgPBR have
a negative impact on fracComp. This implies that learners
who skip, speed, and/or pause are targeting specific points
in the videos at the expense of completing the entirety of the
content. A learner predicted to have high numFFs could be
given an abridged version of the video, while those anticipated
to have high fracPaused, numPauses, and/or numRWs could
be presented with remediation videos to preemptively address
potential confusions. The negative coefficient of stdPBR could
also indicate that the instructor spent too much time on rudi-
mentary material (prompting learners to increase the playback
rate), but too little time on challenging content (prompting
them to slow it down). The instructor may consider better
aligning the speed of content delivery with its difficulty.

Surprisingly, unlike fracComp, fracPlayed is positively cor-
related with numPauses and numRWs. This difference may be
explained by video difficulty: when learners pause and skip
back, they may repeat the same content multiple times, which
will increase fracPlayed but not fracComp.

III. BEHAVIORAL PREDICTION

We now use the statistical analysis to formulate (Sec. III-A)
and evaluate (Sec. III-C) video-watching behavior predictors.

A. Formulating Predictors

Training and testing sets. Due to the high drop-off rates we
saw in Sec. II-C, we will build and evaluate our predictors
using the set of 535 learners u who watched at least 15% of
the videos v. Letting S be the set of learner-video pairs in this
category, we divide S into training C and test E = S \ C sets.
We will explain these partitions further in Section III-B.

Least-squares bias predictors. Given that our statistical
analysis in Sec. II revealed the presence of bias values, we
start with predictors that learn feature-specific biases for each
learner and each video. Formally, letting bXu and bXv be the
biases for u and v with respect to feature X , the prediction
x̂uv for the value of X taken by learner u on video v is

x̂uv = X̄ + bXu + bXv

where X̄ is the global mean of the feature. We determine the
model variables bXu and bXv by solving the following least-
squares optimization problem over the training set C:

minimize{bXu ,bXv }
∑

(u,v)∈C

(xuv − x̂uv)2

where xuv is the actual value of feature X taken by (u, v) ∈ C.
Collaborative filtering predictors. Next, we perform nearest-
neighbor-based collaborative filtering on the errors produced
by the least-squares bias predictor x̂uv on the training set. We
take neighbors across videos. Formally, letting v and i be two
videos, we first quantify the distance dvi between them as:

dvi =

∑
u∈Uvi

x̃uvx̃ui√∑
u∈Uvi

(x̃uv)2
√∑

u∈Uvi
(x̃ui)2

where Uvi is the set of learners u who watched both videos
v and i in the training set, and x̃uv = xuv − x̂uv is the bias
predictor error. The more similar the bias predictor errors x̃uv
and x̃ui of the videos, then, the smaller their distance metric.

Given a query video v, we then select its top-K nearest
neighbor videos based on the maximum values of |dvi| across
i, i.e., those with the highest similarity. Denoting Kv as the
resulting neighborhood of v, we then form the collaborative
filtering-based prediction x̂Nuv of the value taken by feature X
for the learner-video pair (u, v) as

x̂Nuv = (X̄ + bXu + bXv ) +

∑
i∈Kv,(u,i)∈C dvix̃ui∑
i∈Kv,(u,i)∈C |dvj |

i.e., the summation is taken only over videos i for which
learner u has watched i in the training set. The specific
weighting scheme here is chosen based on [15]. The number
of neighbors K is a parameter we will vary in our evaluation.
Regularized predictors. Finally, we introduce regularization
to the collaborative filtering predictors to analyze and prevent



overfitting on the training set. This is done by adjusting the
least-squares minimization for the bias terms to include an L2
regularization penalty term, weighted by a tradeoff parameter
λ:

minimize{bXu ,bXv }
∑

(u,v)∈C

(xuv−x̂uv)2+λ(
∑
u

(
bXu
)2

+
∑
v

(
bXv
)2

)

We then proceed to calculate the collaborative-filtering predic-
tions x̂Nuv using the regularized versions of the x̂uv . The effect
of λ will be considered in our evaluation.

B. Evaluation Implementation and Metric

We now briefly discuss our implementation. We solve the
minimizations for the regularized and non-regularized biases
bX via the standard normal equations for least squares. The
nearest neighbor algorithm was then implemented de novo.

To partition the dataset S into training C and test E sets, we
first remove any learner-video pairs from S that were statistical
outliers either for the fracSpent or fracPaused features. Then,
in each evaluation iteration, we randomly split 90% of S
into C, and hold out the remaining 10% for E . After training
the predictors for each feature on C, we evaluate model
performance on E according to the Root Mean Squared Error
(RMSE) metric [4]:

RMSE =

√√√√ ∑
(u,v)∈E

(xui − x̂pui)2
|E|

where x̂pui is the predicted value of (u, v) ∈ E for the
model under consideration. The lower the RMSE, the higher
the prediction quality. For each model and each choice of
parameter K and λ, we repeat this random partition, training,
and RMSE evaluation ten times and report the average result.

As stated, we sweep over several values of the number of
neighbors K and the regularization parameter λ in our eval-
uation. For each feature, we consider K ∈ {2, 5, 10, 20, 50}
and λ ∈ {0, 0.01, 0.05, 0.1, 0.5, 2, 5, 10}.

C. Results and Discussion

We divide the evaluation into two parts: (i) optimizing
K compared with the biases alone, and (ii) optimizing λ
compared with the other methods.
Optimizing K. Table III gives the RMSE values obtained
by the bias and collaborative filtering predictors, with the
best observed neighborhood size K given in each case. These
results indicate reasonable quality of the predictions overall:
the RMSE of 0.2865 obtained by collaborative filtering on
fracComp, for example, represents a 43% improvement over a
random predictor (which is expected to have an RMSE of 0.5
since fracComp ranges between 0 and 1). This demonstrates
the overall ability to predict a learner’s future behavior.

Further, we see that using a video’s nearest neighbors
improved the quality of our predictions for all features except
numRWs and numFFs. This confirms our belief that individual
learners tend to have some similarities in the way they watch
videos, irrespective of the particular content being covered.

TABLE III
RMSE VALUES OBTAINED BY THE BIAS AND COLLABORATIVE FILTERING
PREDICTORS FOR THE BEST CHOICE OF K . COLLABORATIVE FILTERING

IMPROVES MODEL QUALITY IN SOME CASES BUT NOT OTHERS.

Feature Bias RMSE Collaborative RMSE Best K
fracSpent 0.37911 0.36836 5
fracComp 0.29513 0.28650 10
fracPlayed 0.48308 0.37945 10
fracPaused 0.71526 0.70373 10
numPauses 3.44089 3.15003 5

avgPBR 0.22700 0.21478 5
stdPBR 0.04183 0.04116 50

numRWs 5.81223 5.99765 2
numFFs 4.80595 5.08605 2

Note that the features vary in the best observed choice of
K. In particular, K = 50 for stdPBR is much larger than that
of other features. It is possible that this is due to fewer choices
of the speed at which videos can be watched: a given query
video therefore may have a stdPBR value similar to that of a
large number of videos, which can be leveraged to predict the
query video’s stdPBR. On the other extreme, numRWs and
numFFs obtained the highest quality on the bias predictor,
i.e., K = 0. The fact that collaborative filtering does not
improve quality in these cases implies that individual learners
may exhibit substantial variations in the skips they register on
different videos, e.g., due to variations in content difficulty.

The majority of the features had their best observed values
of K at either 5 or 10. In general, the models improve as
the number of neighbors taken increases, but deteriorates at a
point when neighbors become less relevant; adding too many
non-similar features can blunt the effect of those with strong
similarity (or dissimilarity). There are several reasons too as
to why a learner may not behave according to the similarity
values between videos. For one, the environment in which the
learner watches a video might impact the number of times they
pause, fast forward, or rewind. If a learner watches one video
in a noisy, distracted environment, they may lose focus and
be forced to skip around more, while if they watch a different
one in a quiet environment this may happen less.
Optimizing λ. In Figure 3, we give the results on each
feature for (i) the least-squares bias predictor, (ii) two different
versions of collaborative filtering, K = 5 and K = 50, and
(iii) regularization for the best choice of λ with K = 2.

Overall, we see that collaborative filtering with or without
regularization is able to improve performance over the biases-
only predictors in all cases except for numFFs. Each accounts
for about half of the cases. The most improvement gleaned by
the regularized collaborative filtering model was in numRWs,
with the second most successful being fracPlayed; this implies
that these features were the most prone to overfitting in the
initial least-squares bias predictor.

Prediction quality for the numFFs feature was maximized
by the unaugmented least-squares bias predictor. Referring
back to Figure 1, we see that this feature exhibits the largest
variation from video-to-video, which is consistent with there
being a lack of similarity between videos. Intuitively, each
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Fig. 3. RMSE values obtained on each feature for four different predictors: least-squares biases, collaborative filtering with K = 5 and K = 50, and
regularization with K = 2 and the best choice of λ. Regularization obtains the highest quality in 4/9 cases.

learner will possess a different level of background knowledge
and interest before watching each video, so the decision of
how much content to skip over will be independent of what
the learner has done in other videos.

IV. CONCLUSION AND FUTURE WORK

In this paper, we developed novel Predictive Learning
Analytics (PLA) methodology for behavior-based prediction
of a learner’s future video-watching behavior. After defining
several features to summarize a learner’s behavior while
watching a video, we performed a statistical analysis on
a Massive Open Online Course (MOOC) dataset that led
to several insights both for instructor analytics and for the
development of behavioral prediction algorithms. We started
our predictive modeling with a least-squares bias predictor
that included biases for each learner and each video with
respect to each feature. We then introduced nearest-neighbor-
based collaborative filtering on the errors produced by the
bias predictor, and finally a regularization method to prevent
overfitting. In evaluating the predictors on our dataset, we
obtained overall low errors in predicting the feature values, and
found that augmenting the bias predictor with collaborative
filtering and/or regularization led to better performance for
all features except one. In presenting these results, we also
were able to derive several analytics that could be used by
instructors to improve course delivery.

Future work may consider an experiment in which the
number of neighbors is varied alongside the regularization
parameter to jointly model the effect of these parameters. Ad-
ditionally, it would be interesting to compute the neighborhood
predictor using similarities between learners and compare
its error with our current neighborhood predictor that uses
similarities between videos; it is possible that a combination
of both types would perform the best. Other types of machine
learning and deep learning algorithms could be considered as
well, perhaps in an ensemble predictor.
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