
ECE 20875
Python for Data Science

Chris Brinton and David Inouye

regular expressions

basic text processing
• Python lets you do a lot of simple text processing with strings:

• But what if we want to do fancier processing? More complicated
substitutions or searches?

s = “hello world”
s.count(“l”) #returns 3
s.endswith(“rld”) #returns True
“ell” in s #returns True
s.find(“ell”) #returns 1
s.replace(“o”, “0”) #returns “hell0 w0rld”
s.split(“ “) #returns [“hello”, ‘world”]
“XX“.join([“hello”, “world”]) #returns “helloXXworld”

See https://docs.python.org/3/library/stdtypes.html#string-methods for more

https://docs.python.org/3/library/stdtypes.html#string-methods

regular expressions
• Powerful tool to find/replace/count/capture patterns in strings: regular

expressions (regex)

• Can do very sophisticated text manipulation and text extraction

• Useful for data problems that require extracting data from a corpus

import re
s = "hello cool world see”
#find all double letters that are one character from the end of a word
p = re.compile(r'((.)\2)(?=.\b)')
#replace those double letters with their capital version
s1 = p.sub(lambda match : match.group(1).upper(), s)
print(s1) #prints ‘heLLo cOOl world see’

regular expressions (regex)
• A means for defining regular languages

• A language is a set (possibly infinite) of strings

• A string is a sequence of characters drawn from
an alphabet

• A regular language is one class of languages:
those defined by regular expressions (ECE 369
and 468 go into more details, including what
other kinds of languages there are)

• Use: Find whether a string (or a substring) matches
a regex (more formally, whether a substring is in
the language)

regular expressions
• A single string is a regular expression: “ece 20875”, “data science”

• Note: the empty string is also a valid regular expression

• All other regular expressions can be built up from three operations:

1. Concatenating two regular expressions: “ece 20875 data science”

2. A choice between two regular expressions: “(ece 20875) | (data
science)”

3. Repeating a regular expression 0 or more times “(ece)*”

building regular expressions
• A regular expression in Python is compiled:

import re

p = re.compile(“ece (264|20875|368)”)

• This creates special code for matching a regular expression (ECE 369/468
discusses the machinery behind this)

• Can then look for the regular expression in other strings:

p.match(“ece 264”) #returns a match object
p.match(“hello ece 20875”) #returns None
p.search(“hello ece 368”) #returns a match object

• match checks only at the beginning of the string, while search looks
throughout, and both only return the first occurrence

inspecting a match object
• We want to see what the match is, so we can set it to a variable:

x = p.search(“hello ece 368”)

• If we print x, we will see the match object (more on objects later)

print(x) # Returns <re.Match object; span=(6, 13),

 # match=‘ece 368’>

• To see the actual match string, we use group():

x.group() # Returns “ece 368”

• To see the index of the match, we use span():

x.span() # Returns (6,13)

extra syntax for regex
• . #wildcard, matches any character (except newline)

• ^abc #matches ‘abc’ only at the start of the string

• abc$ #matches ‘abc’ only at the end of the string

• a? #matches 0 or one ‘a’

• a* #matches zero or more ‘a’s

• a+ #matches one or more ‘a’s

• [abc] #character class, matches ‘a’ or ‘b’ or ‘c’

• [^abc] #matches any character except ‘a’ or ‘b’ or ‘c’

• [a-z] #character class, matches any letter between ‘a’
and ‘z’

extra syntax for regex
• \s #matches whitespace

• \S #matches non-whitespace

• \d #matches digit

• \D #matches non-digit

• \w #matches any word character, which is alphanumeric
and the underscore (equivalent to [a-zA-Z0-9_])

• \W #matches any non-word character

s = “hello 12 hi 89. Howdy 34”
p = re.compile(“\d+”)

result = p.findall(s)
print(result)

#Output: ['12', '89', '34']

lookahead characters
• \b : matches the empty string at

the beginning or end of a word

• \B : matches the empty string
not at the beginning or end of a
word

• (?=abc) : matches if “abc” is what comes next

• (?!abc) : matches if “abc” is not what comes next

• These are zero-width assertions: They don’t cause the engine to advance
through the string, and they are not part of the resulting match
Other regex examples: https://www.pythonsheets.com/notes/python-rexp.html

https://www.pythonsheets.com/notes/python-rexp.html

groups
• Can use parentheses to capture groups

• Groups together characters (like in math): (abc)*
means repeat abc, but abc* means repeat c

• Groups are captured by regular expressions

• match.group(k) returns the contents of the
kth group in the matched text

• Group 0 is always the whole matched regex

• match.groups() returns all subgroups in a
list

groups
• Groups can be nested — count

based on number of left parentheses

• Groups can be named:
re.compile(“(?P<foo>abc)”)

• Can refer to groups within a regular
expression (or a substitution):

• \k refers to the content of the kth
group

• (?P=foo) refers to the content of
the group named foo

x = “dog = (?P<pet>\w+), cat
= (?P=pet)”

y = "random_text dog =
sammy, cat = sammy"

z = re.compile(x).search(y)

print(z.group(“pet”))

#prints sammy

substitution
• There is also a replacement command sub()

• p.sub(a,b) rewrites b with any match to p replaced by a

• For example, we can generate the following regex, with groups:

• p = re.compile(r’hello (\w*)’) #match “hello …”

• Note that prefixing a string with `r’ makes it a raw string literal that tells Python not to
process it (useful when trying to match characters like “\n”)

• We can write the following replacements, using the groups if we want:

• p.sub(r’goodbye \1’, ‘well hello ece’) #returns ‘well goodbye ece’

• p.sub(r’\1 goodbye \1’, ‘well hello X’) #return ‘well X goodbye X’

