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sampling distribution 

• Recall that by the central limit 
theorem, sample means 
approach a normal distribution


• Can we use this to draw 
conclusions about our data?
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asking questions about data 
• Suppose a factory claims to produce widgets with an average 

weight of 100g and a standard deviation of 22g


• We receive a new shipment of widgets which seem off, and 
we want to see whether the factory has shifted


• Form two hypotheses:


• Null hypothesis ( ): The factory is producing according 
to specification, i.e., .


• Alternative hypothesis ( ): The factory is not producing 
according to specification, i.e., .


• Suppose we weigh 100 of the new widgets (i.e., sample 
 widgets) and find their average weight is 


• What can we conclude?

H0
μ = 100g

H1
μ ≠ 100g

n = 100 x̄ = 95g



asking questions about data 

• Are the widgets in spec? 

• Not as simple as it seems! 


• We have picked one sample of 
widgets, but it could just be a 
bad sample!


• Can we use our sampling 
distribution to help?



100g

hypothesis testing  
• Suppose the null hypothesis is true (new widgets 

are from the same distribution as the original 
widgets) 

• Then the sampling distribution should have its 
mean at g


• And the sampling distribution should have a 
standard deviation of:


g 


• This is called the standard error (SE)


• Remember,  is from the population, which we 
sometimes have to estimate with  (from the 
sample)

μ = 100

SE ≜ σX̄ =
σ

n
≈

22
10

= 2.2

σ
s𝒩(100, 2.2)



100g

hypothesis testing  
• Remember properties of normal 

distribution: 


• ~68% of points within one σ of 
µ


• ~95% of points within two σ of 
µ


• ~99.7% of points within three 
σ of µ


𝒩(100, 2.2)



hypothesis testing  
• Remember properties of normal 

distribution: 


• ~68% of points within one σ of 
µ


• ~95% of points within two σ of 
µ


• ~99.7% of points within three 
σ of µ


• 95g is between 2 and 3  of σX̄ μ

100g95g

• So what about our sample  of 
95g?


x̄

• Very unlikely for it to have 
come from this distribution!



z-test
• The statistical z-test


• Reasoning about 


• Applicable when we know  or if  is large enough (if we don’t know σ and  is large enough, 
we can estimate with s)


• Can construct sampling distribution assuming null hypothesis is true


• Set a significance level  for the test 

• Fraction of distribution in each “tail” considered anomalous is  (if two-sided test)


• See whether sample  falls in that tail


• If so, reject null hypothesis  in favor of alternative ; otherwise, do not reject (but this 
does not prove that  is true)

μ

σ n n

α

α/2
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H0 H1
H0



z-test

µ

• Set a significance level  for the test 

• Fraction of distribution in each “tail” 
considered anomalous is  (if two-sided)


• See whether sample  falls in that tail


• If so, reject null hypothesis  in favor of 
alternative ; otherwise, do not reject (but 
this does not prove that  is true)

α

α/2

x̄

H0
H1

H0

Significance level: α = 0.05

In this case, reject H0

x̄

0.0250.025



p-value for z-test
• We can formalize this logic by calculating 

the p-value


• Place sample  on distribution


• Ask what fraction of distribution is farther 
from the mean  than the sample 


• This is your p-value, which is compared to 
the significance level : 

• Usually ask for  or  (i.e., 
so that  for significance)


• Sometimes  is OK

x̄

μ x̄

α

α = 0.05 0.01
p ≤ 0.05, 0.01

α = 0.1

µµ

p-value

x̄

𝒩(μ, σ2/n)



procedure
• Compute sample mean 


• Compute standard deviation of sampling 
distribution (standard error)


 


• Compute z-score


 


• Normalizing the sample to the standard 
normal distribution 


• Compute p-value from z-score

x̄

SE =
σ

n

z =
x̄ − μ
SE

𝒩(0,1)

µµ

p-value

z 0

𝒩(0,1)



computing p-value from z-score  

• One way: look up in a standard table


• In Python:


 
import scipy.stats as stats 
 
# compute z = (x - mu) / SE 
 
p = 2 * stats.norm.cdf(-abs(z)) 

• Why -abs(z)? cdf considers left of the z point, so 
if z is positive, we want to reference -z

µµ

p-value

− |z | 0

𝒩(0,1)

|z |



overview of z-test
• Assumptions needed for statistical test


• Null hypothesis 


• Alternative hypothesis 


• A statistical significance level 


• Equivalent questions (if yes, then reject null hypothesis)


• Is the sample mean, , in tail defined by  of the sampling distribution
?


• Is the z-score, , in the tail defined by  of a 

standard normal ?


• Is the p-value, , less than ?

H0

H1

α

x̄ α
≈ 𝒩(μx̄, σ2

x̄)

z =
x̄ − μx̄

σx̄
=

x̄ − μ
SE

α

𝒩(0,1)

p = 2F𝒩(0,1)( − |z | ) α

µ

Significance level: α = 0.05

x̄

0.0250.025

µµ

p-

z 0

𝒩(0,1)

𝒩(0,1)

p

zα/2−zα/2

𝒩(μx̄, σ2
x̄)



back to our original example
• 





• So we calculate:








• Conclusion:


• Significant at  (reject )


• Not significant at  (cannot reject )

μ = 100, σ = 22

x̄ = 95, n = 100

z =
x̄ − μ

σ/ n
=

95 − 100

22/ 100
= − 2.273

p = 2 ⋅ F(z |0,1) = 0.023

α = 0.1,0.05 H0

α = 0.01 H0

µµ

p-value = 0.023

−2.273 0

𝒩(z |0,1)

2.273



comparing two means 
• What if you have two populations, and you want to know 

whether their means are statistically different?


• Sample 1: Sample size , from pop. mean , variance 


• Sample 2: Sample size , from pop. mean , variance 


• Hypotheses


•  The means are the same, i.e., 


•  The means are different, i.e., 


• Can use two-sample z-test


• Under null hypothesis, sampling distribution of difference 
between two means has:


 

n0 μ0 σ2
0

n1 μ1 σ2
1

H0 : μ0 = μ1

H1 : μ0 ≠ μ1

μ = μ0 − μ1 = 0 σ =
σ2

0

n0
+

σ2
1

n1

• Test point is 


• z-score is 

x̄ = x̄0 − x̄1

(x̄ − μ)/σ

µµx̄

𝒩(μ, σ2)

μ = 0



confidence intervals 

• We see these a lot: Ranges above and 
below values on a graph


• What do they mean?


• Surprisingly tricky question to answer
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intuition of confidence intervals 
• A confidence interval is a range around the mean which says 

something about how “good” your estimation procedure is


• How “good” is your choice of number of samples, given the 
variance in the population


• Interpretation of a (95%) confidence interval:


• if I were to repeat the experiment a large number of times, 95 
percent of confidence intervals would contain the population 
mean


• before I run the experiment, there is a 95 percent chance that the 
population mean will fall within the computed confidence interval


• if the population mean is inside the confidence interval, it would 
not be statistically significant (informally, you wouldn’t be 
surprised!)
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the first interpretation
• If I were to repeat the experiment a large number of times, 95 percent of 

confidence intervals would contain the population mean 

• In the diagram below, each vertical bar is one confidence interval 
calculated for one experiment


• For a 95% confidence interval, we expect 95% of them will include μ

source: NYW-confidence-interval.svg 
Wikipedia user Tsyplakov



confidence intervals more formally
• If the population parameter is outside the c% 

confidence interval, then an event occurred that had 
a probability of less than of happening


• Note that we are setting  ahead of time (unlike with 
hypothesis testing, where we figure out how likely/
unlikely something is after the fact)


• Wide confidence interval: The variance of your 
data is high (and/or your sample size is small), so 
we need a wide interval to make the above 
statement true.


• Narrow confidence interval: The variance of your 
data is small (and/or your sample size is large), so 
we don’t need a wide interval to make the above 
statement true.

(100 − c) %

c



computing confidence intervals 
• Conceptually related to z-tests, but the perspective is reversed


• For what sampling distributions (centered at the population 
mean), would our sample mean NOT be surprising?


• Note: Our confidence interval is centered around the sample 
mean (instead of the hypothesized population mean)


• Remember definition of z-score:


 


• And p-value:


p = 2 * sp.stats.norm.cdf(-abs(z)) 

• If  is the desired confidence level (here in decimal form), what 
 do we need such that ?

z =
x̄ − μ

σ/ n

c
z p ≤ (1 − c)

Extreme values of  such that  would be unsurprisingμ x̄

Possible values of  such that  would be unsurprisingμ x̄



• Call this 


• Compute in Python as follows:


z_c = stats.norm.ppf(1 - (1 - c)/2) 

• While norm.cdf goes from z-score to probability, 
norm.ppf goes from probability to z-score


• Now we can answer the question: What range of  
would be “unsurprising” at % confidence level? 

 

• This is your % confidence interval 

zc

μ
c

zc =
x̄ − μ

σ/ n
→ μ ∈ (x̄ −

zc ⋅ σ

n
, x̄ +

zc ⋅ σ

n ) = (lc, uc)

c

computing confidence intervals 

zc

1 −
1 − c

2

x̄lc uc

lc uc

lc uc

increasing

c



100g

95g

back to our original example
• Let’s calculate 90%, 95%, and 99% confidence intervals for 


• Recall that our sample had





• Thus, the confidence intervals are:





• For 90%, 95%, 99%, . Thus,






μ

x̄ = 95g, σ = 22g, n = 100

μ ∈ (95 −
σ

n
⋅ zc, 95 +

σ

n
⋅ zc) = (95 − 2.2 ⋅ zc, 95 + 2.2 ⋅ zc)

zc = 1.645, 1.960, 2.576
90 % : (91.38, 98.62)
95 % : (90.69, 99.31)
99 % : (89.33, 100.67)

How would we make the intervals narrower 
for the same levels of confidence?



we’ve been fudging 
• Recall that to use the -distribution, we 

must either know  or have large enough 



• The student’s t-distribution and t-test 
is used when the normal approximation 
does not hold:


• i.e., when we don’t know  (which we 
usually do not) and when 


• Can use this to reason about , 
including building confidence intervals 
and conducting hypothesis tests

z
σ

n

σ
n < 30

μ



student’s t-distribution 
• Similar to the standard  normal distribution 

(density shown to the right)


• Symmetric about mean


• Bell curve shaped


• But has fatter tails, i.e., more weight of the distribution 
away from the mean


• Accounts for outliers better


• Parameter of the distribution is the degrees of freedom 


• : One less than the number of samples


• Looks more and more like the standard normal as 

𝒩(0,1)

v

v = n − 1

n → ∞

f X
(x

)



t-test and confidence intervals
• Works the same as the -test, except


• use  instead of 


• compare to the -distribution


• Computing the test statistic:


• First get the standard deviation of the sample:





• Then we get the “ -score”:


z

s σ

t

s =
1

n − 1

n

∑
i=1

(xi − x̄)2

t

t =
x̄ − μ

s/ n

Compare to the 
formula for z

f X
(x

)

• Then we get the -value:


p = 2 * stats.t.cdf(-abs(t), df)


• And for confidence intervals, we find the 
-score corresponding to :


t_c = stats.t.ppf(1 - (1 - c)/2, df)

p

t
c



one-sided tests
• Sometimes we are only interested in values 

departing from the mean in one direction


• This is a one-sided or one-tailed test


• For example, suppose we want to assess 
whether our widgets are being produced at 
a significantly higher weight:


•  


• 


• How does the -value compare between 
one and two-sided tests? 

H0 : μ ≤ 100g

H1 : μ > 100g

p

Null hypothesis is 
always the logical 

“opposite"
• Any given datapoint has half the 

p-value in a one-sided test than it 
does in a two-sided test


• We also do not divide  by 2 for 
a one-sided test, because all the 
area is now in one tail

α



simple extensions
• What do we do in a two-sample test when one of the samples violates the 

normal approximation assumptions?


• Use a two-sample t-test


• Can we build a confidence interval around a mean when the normal 
approximation is violated?


• Yes, as discussed, just use the -statistic in place of the -score


• What if we are only interested in a confidence interval on one side (e.g., a 
lower bound or an upper bound)?


• Can use a one-sided interval, where one of the bounds is replaced by 
 or 


• When computing  or , instead of   (where dividing by 2), 
use  since there is only one tail

t z

−∞ +∞

zc tc 1 − (1 − c)/2
1 − (1 − c) = c

c

zc


