
3/30/2020 class_objects

localhost:8888/nbconvert/html/class_objects.ipynb?download=false 1/7

Classes and Objects

Python, like C++ and Java, is object oriented. The basic data model in Python is that everything is an object of
some sort. An object combines data and methods. Everything in Python is an object, including "simple" data
like integers and floats.

A class in python defines a set of attributes: these can be variables or methods. This defines a set of properties
that you want all objects of a certain type to have. An object in Python is an instance of a class: it shares
attributes with all other classes, but can also have attributes that are different from other instances. This lets you
have objects with their own "local" data.

Methods for a class take an extra self argument. When you invoke a method on an object (think
myList.append(x)), this self argument refers to the object you invoked the method on (in the example,
myList).

Let's walk through an example of defining a class for a counter, and instantiating objects from this class to keep
their own counts:

In [1]: class Counter () :
 totalCount = 0 #shared number across all instances

 def __init__(self) : #constructor for the class
 self.count = 0 #local count for each instance

 def incr(self) : #method for the class
 Counter.totalCount += 1
 self.count += 1

 def __str__(self) : #special function which overwrites "print" for t
his class
 return "Total count: {}, Local count: {}".format(Counter.totalCo
unt, self.count)

In [2]: c1 = Counter()
c2 = Counter()
print(c1)
print(c2)

Total count: 0, Local count: 0
Total count: 0, Local count: 0

3/30/2020 class_objects

localhost:8888/nbconvert/html/class_objects.ipynb?download=false 2/7

In [3]: for i in range(0,5):
 c1.incr()
 c2.incr()

print(c1)
print(c2)

Classes themselves, like functions, are just objects, as are the methods inside them:

In [4]: print(type(Counter))
print(type(Counter.incr))

Here is one of the examples we did in the lecture slides:

In [5]: class Foo :
 x = 7 #this will be accessible to all Foos

 #called when a new Foo is created
 def __init__(self, i) :
 self.y = i #this is specific to each Foo

 def bar(self) :
 return self.x + self.y

In [6]: a = Foo(1) #a.x = 7, a.y = 1
b = Foo(2) #b.x = 7, b.y = 2

print(a.bar()) #prints 8
print(b.bar()) #prints 9

Here is an example of a class for "cars" which tracks variables such as make/model and includes a method to
calculate sale price:

Total count: 10, Local count: 5
Total count: 10, Local count: 5

<class 'type'>
<class 'function'>

8
9

3/30/2020 class_objects

localhost:8888/nbconvert/html/class_objects.ipynb?download=false 3/7

In [7]: class Car() :
 """A car for sale by Jeffco Car Dealership.

 Attributes:
 wheels: An integer representing the number of wheels the car ha
s.
 miles: The integral number of miles driven on the car.
 make: The make of the car as a string.
 model: The model of the car as a string.
 year: The integral year the car was built.
 sold_on: The date the vehicle was sold.
 """

 def __init__(self, wheels, miles, make, model, year, sold_on):
 """Return a new Car object."""
 self.wheels = wheels
 self.miles = miles
 self.make = make
 self.model = model
 self.year = year
 self.sold_on = sold_on

 def sale_price(self):
 """Return the sale price for this car as a float amount."""
 if self.sold_on is not None:
 return 0.0 # Already sold
 return 5000.0 * self.wheels

 def purchase_price(self):
 """Return the price for which we would pay to purchase the ca
r."""
 if self.sold_on is None:
 return 0.0 # Not yet sold
 return 8000 - (.10 * self.miles)

In [8]: v = Car(4, 0, 'Honda', 'Accord', 2014, None)

In [9]: v.sale_price()

In [10]: v.purchase_price()

In [11]: v.sold_on = '10-31-2019'

In [12]: v.purchase_price()

Out[9]: 20000.0

Out[10]: 0.0

Out[12]: 8000.0

3/30/2020 class_objects

localhost:8888/nbconvert/html/class_objects.ipynb?download=false 4/7

For more information and examples, please refer to documentation on the Python data model
(https://docs.python.org/2/reference/datamodel.html
(https://docs.python.org/2/reference/datamodel.html)) and Python classes
(https://docs.python.org/2/tutorial/classes.html (https://docs.python.org/2/tutorial/classes.html)).

All examples from lecture notes
In [13]: # Integers, lists, functions and objects

(and even classes) are objects in Python
my_integer = 5
my_list = [1.0, 2, 3]
def my_function(): return 0
class MyClass: pass
my_object = MyClass()

Show id and type of each object
for o in [my_integer, my_list,
 my_function, my_object, MyClass]:
 print(f'id={id(o)}, type={type(o)}')

id=4429469216, type=<class 'int'>
id=4483350856, type=<class 'list'>
id=4484656120, type=<class 'function'>
id=4484987984, type=<class '__main__.MyClass'>
id=140526985691224, type=<class 'type'>

https://docs.python.org/2/reference/datamodel.html
https://docs.python.org/2/tutorial/classes.html

3/30/2020 class_objects

localhost:8888/nbconvert/html/class_objects.ipynb?download=false 5/7

In [14]: class Foo :
 x = 7 #this will be accessible to all Foos
 #it is a class variable

 #this is called when a new Foo is created
 def __init__(self, i) :
 self.y = i #this is specific to each Foo
 #it is an instance variable

 #this will be available to all Foos
 #it is a class method
 def bar(self) :
 return self.x + self.y

#defining objects as instances of class Foo
a = Foo(1) #a.x = 7, a.y = 1
b = Foo(2) #b.x = 7, b.y = 2

#invoking the bar method on the objects
print(a.bar()) #prints 8
print(b.bar()) #prints 9

In [15]: class SimpleClass():
 def __init__(self, x):
 # internal created
 self.myx = x
 def add(self, y):
 # internal access and update
 self.myx = self.myx + y
my_object = SimpleClass(10)
external access
print(my_object.myx) # 10
internal update
my_object.add(15)
print(my_object.myx) # 25
external update
my_object.myx = 200
print(my_object.myx) # 200
external variable creation
my_object.myz = 18
print(my_object.myz) # 18
external variable deletion
del my_object.myz
try:
 print(my_object.myz) # Error
except:
 print('Error accessing myz since deleted')

8
9

10
25
200
18
Error accessing myz since deleted

3/30/2020 class_objects

localhost:8888/nbconvert/html/class_objects.ipynb?download=false 6/7

In [16]: class MultipleLists():
 def __init__(self):
 self.lists = []
 def __add__(self, a):
 newlists = MultipleLists()
 newlists.lists = self.lists.copy()
 newlists.lists.append(a)
 return newlists
 def __len__(self):
 return sum([len(a) for a in self.lists])
 def __str__(self):
 return ', '.join([
 f'L{i+1}={a}'
 for i, a in enumerate(self.lists)
])
many_lists = MultipleLists()
print(many_lists) # ''
print(len(many_lists)) # 0
many_lists = many_lists + [3,5,1]
print(many_lists) # L1=[3, 5, 1]
print(len(many_lists)) # 3
many_lists += [8, 4]
print(many_lists) # L1=[3, 5, 1], L2=[8, 4]
print(len(many_lists)) # 5

0
L1=[3, 5, 1]
3
L1=[3, 5, 1], L2=[8, 4]
5

3/30/2020 class_objects

localhost:8888/nbconvert/html/class_objects.ipynb?download=false 7/7

In [17]: class Employee:
 empCount = 0

 def __init__(self, name, salary):
 self.name = name
 self.salary = salary
 Employee.empCount += 1

 def displayCount(self):
 print("Total employees: %d" % Employee.empCount)

 def displayEmployee(self):
 print("Name: ", self.name, ", Salary: ", self.salary)

emp1 = Employee("Alice", 100000)
emp1.displayEmployee() # Name: Alice , Salary: 100000
emp1.displayCount() # Total Employees: 1

emp2 = Employee("Bob", 50000)
emp2.displayEmployee() # Name: Bob , Salary: 50000
emp1.displayCount() # Total Employees: 2

Name: Alice , Salary: 100000
Total employees: 1
Name: Bob , Salary: 50000
Total employees: 2

