
1/15/2020 code-python-basics

0.0.0.0:8766/notebooks/code-python-basics.ipynb 1/5

Python for C programmers
The basics of Python are fairly simple to learn, if you already know how another structured
language (like C) works. So we will walk through these basics here. This is only intended to be a
quick overview, not a deep dive into how Python works. We will spend more time talking about
certain topics (such as higher order functions) in later lectures, but for more details about the
"basics," please talk to the instructors or the TA, or take a look at the Python reference pages
(https://docs.python.org/3.6/reference/index.html)

One big difference between C and Python is that C is compiled while Python is interpreted. This
means that to run a C program, you first have to compile it (e.g., with gcc) and then run it; but
once you compile the program, you have a standalone executable (e.g., a.out). With a Python
program, you do not have to compile the program but to run the program you need to run it in the
Python interpreter (e.g., > python hw0.py)

In practice, at least for this class, this distinction will not really matter (it can matter more once you
get to long-running programs that operate over large amounts of data)

Variables and Types
Perhaps the biggest difference between C and Python is that C variables are statically typed -- you
need to say whether a variable x is an int or a float right up front. In Python, you don't:

In []:

Note that this means that we don't need to "declare" variables -- we can just use them whenever
we need to.

What's interesting about Python, though, is that while we say the type of x is an int , what's
really happening is that x is a reference to an integer object, which happes to have the value 1.
x itself doesn't have a fixed type. We can re-assign it:

In []:

You can even make x a string:

In []:

Python does its type checking dynamically. It will not tell you until you try to do something with a
variable whether the operation is legal or not:

x = 1
type(x)

x = 1.2
type(x)

x = "hello"
type(x)

https://docs.python.org/3.6/reference/index.html

1/15/2020 code-python-basics

0.0.0.0:8766/notebooks/code-python-basics.ipynb 2/5

In []:

In []:

Python will also perform type coercion: when it makes sense, it will convert an object from one type
to another to let an operation work:

In []:

Control statements
Control statements in Python look a lot like their counterparts in C: if statements, while loops,
for loops. The biggest difference is that in Python whitespace matters. We do not use { and }

to separate blocks. Instead, we use colons (:) to mark the beginning of a block and indentation to
mark what is in the block.

If Statements

Here is the equivalent of the C statement:

if (r < 3) printf("x\n"); else printf("y\n");

In []:

And an example of multiline blocks:

len(x) #this will work because x is a string

x = 1.2
len(x) #what will happen here?

p = 1
print (type(p))

q = .2
print (type(q))

r = p + q
print (type(r))
print ("value of r: {}".format(r)) #compare this to printf!

if r < 3:
 print ("x")
else:
 print ("y")

1/15/2020 code-python-basics

0.0.0.0:8766/notebooks/code-python-basics.ipynb 3/5

In []:

While Loops

while loops are similar:

In []:

In []:

For Loops

for loops are a little trickier. They do not take the same form as C for loops. Instead, for loops
iterate over collections in Python (e.g., lists). These are more like foreach loops that you might
see in other languages (or the for (x : list) construct you see in Java). So let's start by
talking about lists:

In []:

In []:

Lists work like a combination of arrays in C (you can access them using []) and lists (you can
append elements, remove elements, etc.) We will talk more about lists in our lecture on data
structures.

if r < 1:
 print ("x")
 print ("less than 1")
elif r < 2:
 print ("y")
 print ("less than 2")
elif r < 3:
 print ("z")
 print ("less than 3")
else:
 print ("w")
 print ("otherwise!")

x = 1
y = 1
while (x <= 10) :
 y *= x
 x += 1

print (y)

x = 1
y = 1
while (x <= 10) :
 if x % 5 == 0 :
 y *= x
 x += 1

print (y)

data = [1, 4, 9, 0, 4, 2, 6, 1, 2, 8, 4, 5, 0, 7]
print (data)

hist = 5 * [0]
print (hist)

1/15/2020 code-python-basics

0.0.0.0:8766/notebooks/code-python-basics.ipynb 4/5

In []:

In []:

You can then iterate over the elements of the list:

In []:

In []:

How do you write a for loop with an index variable that counts from 0 to 4, like you might in C?
for (int i = 0; i < 5; i++)

Use the standard function range , which lets you count from a lower bound to an upper bound
(with an optional step):

In []:

In []:

You can also make your range command add a stride that will make it skip numbers:

In []:

Which means that you can use this range to print every other element of data :

In []:

But there's a better way to do this! You can use slicing to generate a version of data that only
contains every other element. This notation may look familiar to you from Matlab, and we will talk
about it more when we discuss data structures

length = len(data)
print ("data length: {} data[{}] = {}".format(length, length - 1, data[leng

data.append(8)
length = len(data)
print ("data length: {} data[{}] = {}".format(length, length - 1, data[leng

for d in data :
 print (d)

for d in data :
 hist[d // 2] += 1
print (hist)

r = range(0,5)
print (r)

for i in range(0, 5):
 print (i)

r = range(0, len(data))
for i in r :
 print(i)

r2 = range(0, len(data), 2)
for i in r2 :
 print(i)

for i in r2 :
 print (data[i])

1/15/2020 code-python-basics

0.0.0.0:8766/notebooks/code-python-basics.ipynb 5/5

In []:

Functions
Basic functions in Python work a lot like functions in C. The key differences are:

1. You don't have to specify a return type. In fact, you can return more than one thing!
2. You don't have to specify the types of the arguments
3. When calling functions, you can name the arguments (and thus change the order of the call)

In []:

In []:

In []:

There are more complicated things you can do with functions -- nested functions, functions as
arguments, functions as return values, etc. We will look at these in the lecture when we talk about
Map and Reduce

data2 = data[::2] #same as data2 = data[0:len(data):2]
print(data2)

def foo(x) :
 return x * 2

print (foo(10))

def foo2(x) :
 return x * 2, x * 4

(a, b) = foo2(10)
print (a, b)

def foo3(x, y) :
 return 2 * x + y

print (foo3(7, 10))
print (foo3(y = 10, x = 7))

