
ECE 20875
Python for Data Science

Chris Brinton and David Inouye

(Adapted from material developed by
Prof. Milind Kulkarni and Prof. Chris Brinton)

MWF, 12:30pm-1:20pm

Section 1: WALC 1055
Section II: FRNY G124

python basics

coding in python
• Standard Integrated Development Environments (IDEs)

• IDLE: Python’s own, basic IDE

• PyCharm: Code completion, unit tests, integration with
git, many advanced development features (https://
www.jetbrains.com/pycharm/)

• Many more!

• Jupyter Notebook (https://jupyter.org/)

• Contains both computer code and rich text elements
(paragraphs, figures, …)

• Supports several dozen programming languages

• Very useful for data science development!

• You can download the notebook app or use Jupyter
Hub available on RCAC (https://www.rcac.purdue.edu/
compute/scholar)

3

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://jupyter.org/
https://www.rcac.purdue.edu/compute/scholar
https://www.rcac.purdue.edu/compute/scholar

basic variables
• No “declaration” command as in other programming languages

• Variable is created when a value is assigned to it

• Can change type after they have been set

• Few rules on naming: Can make them very descriptive!

• Must start with a letter or underscore

• Case-sensitive (purdue & Purdue are different)

• Combinations (+) work on all types

“xyz	”	+	“abc”	=	“xyz	abc”	

3.2	+	1	=	4.2

4

operators and control statements
• Comparison operators:

a	==	b,	a	!=	b,	a	<	b,	

a	<=	b,	a	>	b,	a	>=	b	

• If statement:
if	r	<	3:	
		print("x")	

• If, elif, else (multiline blocks):
if	b	>	a:	
		print("b	is	greater	than	a")	
elif	a	==	b:	
		print("a	and	b	are	equal")	
else:	
		print("a	is	greater	than	b”)

5

• Arithmetic operators:
a	+	b,	a	-	b,	a	*	b,	

a	/	b,	a	%	b,	a	**	b	

• Assignment operators:
a	=	b,	a	+=	b,	a	-=	b,	

a	*=	b,	a	/=	b,	a	**=	b	

• Logical operators:
(a	and	b),	(a	or	b),	

not(a),	not(a	or	b)

lists
• One of the four collection data types

• Also tuples, sets, and dictionaries

• Lists are ordered, changeable, and
allow duplicate members
thislist	=	
["apple",	"banana",	“apple”,	
“cherry”]	

• Can pass in an integer index, or a
range of indexes
thislist[0]	=	“apple"	
thislist[-1]	=	“cherry”	
thislist[1:3]	=	[“banana”,	“apple”]

6

• Length using len() method
print(len(thislist))	

• Adding items to a list
thislist.append(“orange”)	
thislist.insert(1,	“orange”)	

• Removing items from a list
thislist.remove(“banana”)	
thislist.pop(1)	

• Defining lists with shorthand
new_list	=	5	*	[0]	

new_list	=	range(5)

loops (more control statements)

7

• while loop: Execute while
condition is true
i	=	1	
while	i	<	6:	
		print(i)	
		i	+=	1	

• for loop: Iterate over a sequence
for	x	in	"banana":	
		print(x)	

• range() operator can be a
useful loop iterator:

for	x	in	range(5,10):	
y	=	x	%	2	
print(y)	

• break: Stop a loop where it is
and exit

• continue: Move to next
iteration of loop
for	val	in	“sammy_the_dog”:	

if	val	==	“h":	
			break	
print(val)

lists in for loops
• In other programming languages, for

loop variables are integers

• In Python, can use any ‘iterable’ object
fruits	=	["apple",	"banana",	"cherry"]	
for	x	in	fruits:	
		if	x	==	"banana":	
				continue	
		print(x)	

• Nested loops can be used too
adj	=	["red",	"big",	"tasty"]	
fruits	=	["apple",	"banana",	"cherry"]	
for	x	in	adj:	
		for	y	in	fruits:	
				print(x,	y)

8

• Can also iterate through a list of lists
data_list	=	[[1,2],[2,6],[5,7]]	
for	point	in	data_list:	

[x,y]	=	point	
z	=	x	**	2	
print(x,y,z)	

• Can use the range function to iterate
through integers
for	x	in	range(2,	30,	3):	
		print(x)	

• Can use a list to index another list
ind	=	[1,	3,	5,	7]	
values	=	[0]	*	8	
for	i	in	ind:	
		values[i]	=	i	/	2

functions
• Block of code which runs when

called

• Defined using def keyword
def	my_function():	
		print("Hello	from	a	function”)	

• Call a function using its name
my_function()	

• Parameters can be passed as
input to functions
def	my_function(country):	
		print("I	am	from	"	+	country)

9

• To return a value, use the return
statement
def	my_function(x):	
		return	5	*	x	

print(my_function(3))	
print(my_function(5))	

• For multiple arguments, can use
keywords to specify order
def	arithmetic(x,y,z):	
		return	(x+y)/z	

print(arithmetic(z=3,x=2,y=4))

tuples

10

• Another of the four collection data types

• Tuples are ordered, unchangeable, and
allow duplicate members
thistuple	=	(“apple",	"banana",	“apple”,	
“cherry”)	

• Indexed the same way as lists
thistuple[0]	=	“apple"	
thistuple[-1]	=	“cherry”	
thistuple[1:3]	=	(“banana”,	“apple”)	

• Once a tuple is created, items cannot be
added or changed

• Workaround: Change to list, back to
tuple

• One “exception”: If a tuple contains a
reference to something changeable, that
something can be changed

• Check if item exists
if	"apple"	in	thistuple:	
		print("Yes,	'apple'	is	in	the	fruits	
tuple")	

• Tuple with one item needs comma
thistuple	=	(“apple",)	#Tuple	
thistuple	=	(“apple")	#Not	a	tuple	

• Built in functions
thistuple.count(“apple")	
thistuple.index(“apple")	

sets

11

• Collection which is unordered, (half)
changeable, and does not allow
duplicates

• Written with curly brackets
thisset	=	{“apple”,	"banana",	
“cherry”}	

• Cannot access items by index, but
can loop through and check for items
for	x	in	thisset:	
		print(x)	

print("banana"	in	thisset)

• Cannot change existing items, but can
add and remove items
thisset.add(“orange")	
thisset.update(["orange",	"mango",	“gra
pes"])	
thisset.remove("banana")	

• Also have set operations just like
mathematical objects
set1	=	{"a",	"b",	"c"}	
set2	=	{1,	"b",	3}	

set1.union(set2)		#Union	
set1.intersection(set2)		#Intersection	
set1.difference(set2)		#set1	\	set2	
set1.issubset(set2)		#Testing	if	subset

dictionaries

12

• Collection which is unordered,
changeable, and indexed

• Also written with curly brackets, but
have keys and values
thisdict	=	{	
		"brand":	"Ford",	
		"model":	"Mustang",	
		"year":	1964	
}	

• Access/change/add values of items by
referring to the key name
thisdict[“model"]	
thisdict[“year"]	=	2019	
thisdict[“color”]	=	"red"

• Can iterate through the keys, values, or both
for	x	in	thisdict:	
		print(thisdict[x])	

for	x	in	thisdict.values():	
		print(x)	

for	x,	y	in	thisdict.items():	
		print(x,	y)	

• Like other collections, can create a dictionary of
dictionaries

child1	=	{"name"	:	“Emil",	"year"	:	2004}	
child2	=	{"name"	:	“Tobias",	"year"	:	2007}	
child3	=	{"name"	:	“Linus",	"year"	:	2011}	

myfamily	=	{“child1"	:	child1,	"child2"	:	child2,	
"child3"	:	child3}	

• Use the copy method (not direct assignment) to
make a copy of a dictionary

mydict	=	thisdict.copy()

