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Abstract—This work proposes a method for course recom-
mendation using grade and enrollment data. We analyze the
per-semester sequence in which courses are taken in order to
create a personalized course transition graph that balances the
student’s current grades, their expected improvement, and course
popularity. Using a dataset of 6000 students and 1500 courses,
we compare the recommended trajectories of top performing and
low performing students to show that popularity alone is a strong
heuristic for recommending successful trajectories.

I. INTRODUCTION

Deciding which set of courses to take can be quite challeng-
ing for both veterans and newcomers in the higher education
world. Despite helpful tools like course reviews and university
specific scheduling applications, students may spend several
hours sifting through the available options. Because of the
large variety of course offerings, scheduling limitations, and
worries about grades, a student may leave college having
missed out on several courses that could have positively
influenced their trajectory through school.

In this paper, we explore methods to recommend courses
for students that will have a positive impact on their overall
college experience. The system we introduce gathers historical
grade and enrollment data to form a directed graph describing
the temporal transition students make between different sets
of courses. Using this graph and a student’s past grade data,
we make personalized suggestions about which course to take
next by balancing course popularity and the grade we expect
them to get in each course.

A. Related Work and Contributions

Although recommender systems began in the context of
product recommendations, they have enjoyed wide use in
education generally as well as course selection specifically
[1], [2]. Broadly, recommender systems have been useful
in personalized learning systems and Massive Open Online
Courses (MOOCs) to craft content within a particular course
to best fit the needs of the learner [3]. For course level
recommendations, many techniques use survey data as a way
to precisely label aspects of each course, such as difficulty,
workload, or relevancy to a particular goal [4]–[6]. Some
researchers use these ratings to estimate students ability levels,
and make recommendations based on the best match for ability
to difficulty [6], while others simply present all available meta-
information to the user in an effort to inform their choice
[5]. These supervised techniques are useful when explicit
survey feedback data is available, but when survey data is

unavailable, recommender systems must infer user preferences
using enrollment history. Some approaches use student en-
rollment history to determine pairwise similarities between
courses, then recommends users take the courses most similar
to ones they had previously taken [7]–[9]. The most common
algorithms used in course recommendation are collaborative
filtering and association rules [10].

Our approach differs from the related work in a few key
ways. In this work we operate using implicit feedback data
rather than explicit feedback data, making use of both course
enrollment and course performance grade data. Although this
results in less straightforward evaluation metrics, this type of
a system is immediately broadly applicable to nearly every
course grade dataset. In addition, current approaches make
recommendations with no regard to the order in which students
take courses. This work differs by considering transitions
between courses and recommending the course a student
should take next, rather than recommending a course a student
should take sometime.

II. RECOMMENDATION ALGORITHM

A. Overview

The recommendation algorithm we propose takes a graph-
ical approach, studying transitions between classes. We use
student transcript data over the past few years to build a sub-
sequency graph, from which the recommendation algorithm
extracts the most optimal transition. The nodes of this directed
graph are the various courses offered by the university, and
the edges point from a class that any student took in one
semester to a class that the same student took in the subsequent
semester. The weight of each graph edge entering a node
can be thought of as relating to the historical probability that
a student selects that class, conditioned on them taking the
originating class in the previous semester. However, given that
empirical transition probability doesn’t take into account grade
performance, we develop a different weighting mechanism to
take this into account.

B. Grade-Based Edge Weights

The equation for the weight of an edge in the subsequency
graph begins with a simple equation representing the grade
improvement experienced by students who transitioned from
class i to class j. This score is an average difference between
the grades of each student s who took both classes,

Hij =

∑nij

s=0(Gsj −Gsi)

nij
(1)



where Gsi represents the grade of student s in class i, nij
represents the number of students who transitioned from class
i to class j, and Hij is the improvement score. For a GPA
range of 0 − 4, this value ranges from −4 to 4, wherein the
highest possible improvement is from a grade of 0.0 to 4.0,
and a negative improvement indicates a grade drop between
classes.

This metric, however, is not equally robust for every transi-
tion. While some classes were taken by hundreds of students
who transitioned in and out quite often, many classes were
much less frequented. This results in discrepancies in the
robustness of each transition due to variable sample sizes,
wherein some transitions occurred much more frequently than
others. We therefore introduce two levels of Bayesian smooth-
ing to this parameter. The first accounts for transition effects
leaving a class, while the second accounts for transition effects
entering a class. The first of these adjustments is governed by
the equation

H ′ij =
nijHij + niH̄i

nij + ni
(2)

where ni is the number of students who took class i and H̄i

is the average improvement score when leaving class i. The
second adjustment is governed by a similar equation

H ′′ij =
nijH

′
ij + njH̄ ′j

nij + nj
(3)

where nj is the number of students who took class j and H̄j

is the average improvement score when entering class j.
Finally, the algorithm converts this improvement score into

an expected grade H∗ by incorporating a user’s input. This
conversion introduces personalization for each user so that
two users with different grades will not receive the same
recommendations. The equation for the expected grade is

H∗ij = min(max(Gi +H ′′ij , 0), 4) (4)

where Gi is the user’s grade in class i. Because H ′′ ranges
from −4 to 4, the expected grade potentially ranges from −4
to 8. Since grades outside the range of 0 to 4 are not possible,
the expected grade is clipped to the allowable range. To those
students, any improvement score above a certain range related
to their current grade would be viewed equally, while H ′′

values below that range would also be viewed equally. We
also note that since this statistic incorporates a students current
classes and grades, it is only possible to calculate the expected
grade for the subset of the graph that transitions out of their
current schedule. This is precisely the subset of classes that
the recommendation algorithm selects from.

C. Popularity-Based Edge Weights

The second factor that the graph’s edge weight function
takes into account is the overall proportion of students who
made the transition between one class and its successor.
Although a course consistently results in lower grades for
students, it could still be popular for a variety of reasons.
Whether it is part of a required course track or taught by a

famous professor, there must be a reason if everyone takes
a class despite expecting a bad grade. This proportionality
metric is taken into account by the popularity score P , which
is defined for the transition from class i to j as the ratio of
the number of students who made that transition to the total
number of students who took the outgoing class i. That is,

Pij =
nij
ni

(5)

Because students averaged four classes in a semester and each
of their previous classes was linked to all of their current
courses, P ranged from 0 to roughly 0.25, the former end of
the range indicating few transitions from one class as opposed
to another, and the latter indicating close to 100% transition
into a class.

D. Composite Recommendation Metric

Finally, the expected grade and popularity metrics are
combined together into a single edge weight for use during
recommendation. The goal in considering both P and H∗ is
to avoid hyper-fixation on grades and model more realistic
considerations. First, both parameters are scaled to a range
of 0 to 1 by multiplying H∗ by a factor of 1/4 and P by
a factor of 1/P ∗, where P ∗ is equal to the inverse of the
average semester size. We add parameterization to determine
the importance of expected grade and class popularity when
recommending courses by multiplying each metric by a new
parameter (α and β, respectively) that can be determined
experimentally based on a training dataset. The subsequency
graph’s final edge weights Wij represent a personal utility of
making the transition from class i to class j according to the
user’s expected grade and course popularity. The final equation
for these weights is:

Wij = α
H∗ij
4

+ β
Pij

P ∗
(6)

Using the subsequency graph as an underlying network,
recommendation is as simple as choosing the edges with the
highest weights among those available. For an input of a
students current courses, the algorithm compiles a list of all
the edges leaving the corresponding nodes in the subsequency
graph, orders them by weight, and suggests the first 5 distinct
classes that the edges point to.

III. DATASET

The algorithm introduced in the previous section was imple-
mented using a dataset from Princeton University, such that a
user inputs the number of classes they took in the most recent
semester, the numerical ID of each class according to the
dataset, and the corresponding grade they received. We utilized
a dataset from Princeton University comprising transcript data
of 6058 students who together took 1568 unique classes.
The classes were renamed and semesters were combined for
anonymity, and schedules were incomplete in some cases,
which resulted in records of fewer classes listed for a student
than normal.
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1 1 x x x

2 2 x x x

3 3 x x x

4 4 x x x

5 5 x x x

6 3 3 x x

7 3 4 x x

8 4 4 x x

9 4 5 x x

10 5 5 x x

11 4 4 3 x

12 4 4 4 x

13 4 4 5 x

14 5 5 4 x

15 4 4 4 3

16 4 4 4 4

17 4 4 4 5

18 5 5 4 4

19 5 5 5 4

20 5 5 5 5

21 5 5 5 6

Fig. 1. Semester splitting rules for a single student. Because the dataset
removed semester information to preserve anonymity, this was the mechanism
whereby we reconstructed the semester divisions from an ordered set of
courses.

While the size of this dataset is substantial, the anonymity
limitations required a set of assumptions to be made in order
to sufficiently analyze the recommendation algorithm. The
first of these assumptions was that the classes listed for a
student ID maintained the order in which they were taken.
This assumption allowed us to split the classes into multiple
semesters based on the total number of classes listed for a
student. Schedules ranged from 1 to 23 classes, and were
separated following the scheme shown in Table 1, which lists
the number of classes delegated to each semester given the
number of classes in a schedule. Schedules of 1-5 classes were
left as one semester, 6-10 were split into two semesters, 11-
14 were split into three semesters, and 15 or more were split
into four semesters. Finally, we assumed that any two classes
could be taken together in a single semester, although in reality
certain classes are restricted from being taken simultaneously
due to overlapping content.

Various other limitations should be noted of the dataset. As
mentioned above, students and courses were anonymized and
potentially randomly ordered; this presented us with a funda-
mental limitation in our ability to track transitions between
courses, given that semesters might not be in any meaningful

order. Additionally, it should be noted that a number of both
courses and students were removed from the dataset, resulting
in a few gaps in both sequences.

Fig. 2. Subsequency graph without edge weights. Note the strong density of
points along specific columns, rows, and top left diagonal.

The unweighted subsequency graph for this dataset is visu-
alized as a sparse matrix in Fig. 2. The strong density of points
along a columns or rows of the graph represents a heavily
populated course. The strong diagonal originating in the top
left of the graph would seem to indicate heavy transitions from
one course to itself, but in reality it simply reflects a common
theme for a course to transition to a nearly consecutive course
(such as C101 to C102). This diagonal suggests that the course
IDs were not randomized, as subsequent courses are often
labelled accordingly, and it supports the choice of semester
delegation as we would expect to see this trend in actual course
selection.

IV. EVALUATION

A. Parameter Tuning

The first step in evaluating our algorithm lies in experimen-
tally optimizing α and β in the edge weight equation (Equa-
tion 6). This is accomplished by separating our dataset into
a training set to learn the entries of the H ′′ and P matrices,
and two test sets of students against which to compare the
relative performance of the recommendation. The first test set
was extracted by sampling a random 10% of students with
GPAs above the 90th percentile (GPA ≥ 3.82), and the second
comprised a random 10% sample of students with GPAs
below the 10th percentile (GPA ≤ 2.69). From these samples,
students with only one recorded semester were removed, such
that the final high GPA test set included Ns = 45 students and
the final low GPA test set included Ns = 52 students. We hope
that the recommender system models the behavior of students



(a) GPA ≥ 3.82 (b) GPA ≤ 2.69

Fig. 3. MAP@N values for various α and β for high (a) and low (b) GPA sets, with N = 25 class recommendations. Note smaller range for the high GPA
test set. (a). Maximal precision values along α and β plotted in red and blue, respectively. Note overall trend upwards as α decreases and β increases, with
an absolute maximum for α = 0.3 and β = 0.8, and absolute minimum for α = 1.0 and β = 0.1. (b). Minimal precision values along α and β plotted in
red and blue respectively. Note similar trend to (a) with higher variation. The absolute maximum precision is achieved when α = 0.1 and β = 0.6, and the
minimum precision when α = 1.0 and β = 0.1.

with high GPAs, while not necessarily modeling the behavior
of students with low GPAs. As a result, we search for the
choice of α and β such that our recommendation performance
is maximized for the high GPA test set and minimized for
the low GPA test set, indicating recommendations that would
result in good grades for a user.

B. Evaluation Metric

We measure the performance of our recommendation algo-
rithm using mean average precision for top-N recommendation
(MAP@N) metric, which rewards algorithms that order the
recommendations properly. Average precision for a set of N
recommendations presented to student s is given by

APs@N =

N∑
n=1

Ps@n · 1s took class cs(n)

min {|Rs|, N}
, (7)

where Rs denotes the set of classes that student s took
during the subsequent semester, cs(n) denotes the nth class
recommended to the learner, and Ps@n denotes the precision
at n, i.e., the fraction of classes among the top n recommen-
dations that the student actually took. Mean average precision
(MAP@N) is the empirical mean of APs@N for all students
in the test set. We use N = 10 classes in our determination
of α and β.

C. Results: Effect of Alpha and Beta

By sweeping both α and β over the range [0.1, 1], we
calculate the precision of the recommendations given by this

algorithm for both the high and low GPA test sets. (Fig. 3).
For context, a random recommendation system was also tested
on the same training and test sets, wherein a random class out
of those present in the training set was suggested with equal
probability for all observed transitions from the input set of
classes. With N = 10 classes, this random system resulted
in a precision of MAP@N = 0.0085 for the high GPA test
set and 0.0074 for the low GPA test set. The recommendation
algorithm has a minimum precision of 0.1830 for the high
GPA set and 0.1185 for the low GPA set, suggesting that
even in the worst case the recommendations given by the
algorithm are better than random. It also provides evidence
that the algorithm does suggest useful courses to students,
even when the input set of courses taken in a semester has
not necessarily been observed before.

Within the high GPA test set (Fig. 3a), we see a rough
curve for precision that decreases with α and increases with
β. While we would expect that students with high GPAs
would heavily consider their expected grades when choosing
courses, this trend is not present in the precision of the
algorithm’s recommendations. This could be due to the fact
that students don’t necessarily have a good way to predict
their own grades in a class and are therefore more likely to
look to popular courses that their friends have taken in the
past. It could also be that the main attraction of classes and
course selection lies in course content and student interest,
and that students somewhat ignore their potential grades in
favor of taking a class they might find interesting. Interestingly,



the overall maximum occurs when α = 0.3 and β = 0.8,
with MAP@N = 0.2251. At this point, the ratio between the
two parameters is not maximized, suggesting that although
popularity is the larger factor in course selection, expected
grade is not ignored altogether.

We see a similar, but smoother trend in the low GPA test set
(Fig. 3b), in which precision decreases with α and increases
with β. The low GPA set had a larger range of precision and,
interestingly, reached above the maximal precision of the high
GPA test set. The maximum precision for this set (MAP@N =
0.2732) occurs at α = 0.1 and β = 0.6, which is close to the
maximum precision point for the high GPAs.

Although both the high GPA set and the low GPA set
favored lower values of α and higher values of β, the primary
difference between the two is the shape of the variation.
Whereas the low GPA set experienced a smooth decline in
precision for increasing α, the high GPA experiences a plateau
for pairs in which α < β, followed by a sharp decrease for
larger values of α. We can see that for both groups, expected
grade is not a very strong predictor, and that popularity is a
strong predictor for the low GPA set, but not necessarily so for
the high GPA set. One possible explanation for why expected
grade was not a strong predictor of courses is that students
don’t necessarily use expected grade in determining which
courses to take, either because of major/general requirements
or because they have a hard time predicting which courses
will raise/lower their GPA. In the region where the popu-
larity metric becomes the dominant factor, the discrepancy
in performance between the high GPA and low GPA groups
could shed light on behaviors of those two groups. Students
with low GPAs may tend towards predictable courses and
course trajectories followed by the majority of their peers,
but students with high GPAs may tend towards more diverse
courseloads.

The difference in the shapes of the two plots could also
explain why the high GPA test set experienced a lower
maximum precision overall. If these students are more likely
to take a diverse courseload, then they would be more likely
to choose transitions that have not been observed before
within the dataset. While any course transition is theoretically
possible, bar certain university specific restrictions such as pre-
requisites and major requirements, this algorithm is restricted
to suggesting courses that have been taken subsequently in
the past. The discrepancy in maximum precision and general
decrease in precision with α could also indicate that GPA is
less a product of course selection as it is of other factors. A
student’s grade may reflect their work ethic, course interest,
and instructor preferences as much as course selection, and
these factors may play a larger role for students with high
GPAs than others. These factors are difficult to disentangle,
and could cause disruptions in the expectations set for this
algorithm with respect to GPA.

D. Results: Precision and GPA

Fig. 3 begins to show a surprising relationship between GPA
and precision, in which the classes recommended to a student

Fig. 4. Precision vs GPA for various α and β pairs, including optimized
values α = 0.3 and β = 0.8. Regression lines are plotted for each pair, with
correlation coefficients r given. GPA is calculated using only courses from
semesters in which the algorithm was able to make recommendations, meaning
that first semester courses are excluded. Note general negative correlation
except for α = β = 0.5.

match those taken by students with overall lower GPAs more
than those with higher GPAs. This relationship is quantified in
Fig. 4. For these tests, 100 students were randomly sampled
from the entire data set and removed for training. Once
again, students with only one recorded semester were removed,
leaving a sample size of Ns = 74. The plotted GPAs were
calculated using the courses from the second semester onward,
as recommendations could be made for these semesters but
not for the first. In regression calculation, outliers outside 2
standard deviations around the mean were removed. None of
the regressions show statistically significant correlation, so it
is difficult to make any conclusions about the direction of the
relationship between precision and GPA.

The general lack of correlation between precision and GPA
may suggest that students who receive good grades do not
choose classes differently to those with lower grades. It is
likely that GPA is not determined only by course selection,
and that it is rather a combination of specific students’ work
ethic and general abilities. While the effect of the ratio between
α and β seen in Fig. 3 points to the inclusion of of expected
grades in course selection to maintain precision, it is possible
that the grade a student expects to receive does not necessarily
match the grade they do receive. It could also be that students
are a poor judge of grade improvement, as they are not privy
to the information contained in the model presented here.

We also note that the precision values for the third set (α =
1.0, β = 0.0) are almost zero, whereas the precision values for
the fourth set (α = 0.0, β = 1.0) are among the highest. This
could suggest that expected grade is a much weaker factor
than popularity when it comes to choosing classes, and it is
perhaps the case that this represents the relative proportion of
course slots that must be filled with required classes rather
than a completely free choice.



The fact that no weight ratio is able to better predict classes
taken by students with high GPAs than those with low GPAs
also suggests that there may be a relationship between α and β
that is not accounted for here. The popularity of a course, for
example, could be related to the fact that many students expect
to receive a good grade in the class, which would point to an
interdependence of the two parameters that is not reflected by
this model.

V. CONCLUSION AND FUTURE WORK

With this course recommendation model and algorithm, we
are not only able to explore trends among students, but suggest
courses similar to those chosen by actual university students.

As it stands, we can use our algorithm to recommend a set
of courses. However, this model does not take into account
the information that could be gleaned from relationships
between classes taken concurrently. A possible solution to this
problem would be to create a concurrency graph, similar to the
subsequency graph above, but with undirected links between
classes that were taken simultaneously during one semester.
We believe that the information encoded in this graph would
hold tremendous insight. For instance, the graph would be able
to provide information about two classes that were never taken
in conjunction. With this information, we could then assume
that these classes could not be taken concurrently, such as
Princeton classes PHY 103 (a physics course on mechanics
designed for engineers) and PHY 105 (a physics course on
mechanics for physics majors), which cannot be taken together
due to their overlapping content. Furthermore, we could also
use tools like the graphical lasso to see the relationships
between groups of factors within this concurrency graph and
discover clusters of courses that work well together. It is
also possible to calculate course and student biases and to
utilize a latent factor model similar to those used in the
Netflix recommendation system. These parameters have the
potential to improve the quality of our recommended courses
by creating a more accurate model of both student and course
relationships.

While this model takes into account two key elements when
determining which courses to recommend, it also overlooks
several other key components. For example, this model has
no consideration for intended majors and minors, nor does it
explicitly consider prerequisite course relationships. General
core requirements are also unaccounted for, and more sub-
jective measures such as course reviews and general academic
interest currently have no place in this model. Further practical
issues are also ignored, including course scheduling and the
semesters in which classes are offered. The limitations of our
data prevented us from including the above features, but it is
possible that our model could be updated to include them with
a more complete dataset.

Finally, the underlying University data that is used to
populate the subsequency graph is continually updated with
each semester and each round of classes taken by Princeton
students. The algorithm also requires the input of at least
one semester of classes and grades from each user, which

could easily be used to update the underlying networks. At
some point, it would be prudent to implement a system
that restructured the graphs along with these sources of new
information so as to maintain the accuracy and quality of
recommendations.
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